Himal Sapkota, Subrata Dasgupta, Bishnudeo Roy, Ejaj K Pathan
{"title":"人类共生菌:抗癌治疗的新一代前、后生物制剂。","authors":"Himal Sapkota, Subrata Dasgupta, Bishnudeo Roy, Ejaj K Pathan","doi":"10.31083/FBE26809","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"17 1","pages":"26809"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human Commensal Bacteria: Next-generation Pro- and Post-biotics for Anticancer Therapy.\",\"authors\":\"Himal Sapkota, Subrata Dasgupta, Bishnudeo Roy, Ejaj K Pathan\",\"doi\":\"10.31083/FBE26809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.</p>\",\"PeriodicalId\":73068,\"journal\":{\"name\":\"Frontiers in bioscience (Elite edition)\",\"volume\":\"17 1\",\"pages\":\"26809\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Elite edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/FBE26809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Elite edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBE26809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Commensal Bacteria: Next-generation Pro- and Post-biotics for Anticancer Therapy.
Cancer is a common, deadly disease with an unknown etiology. Meanwhile, current therapeutic options possess significant risks. However, probiotic bacteria and their metabolites have been reported to have antiproliferative and apoptotic effects on cancer cells. Therefore, because of their selective specificity and lack of treatment-associated comorbidities, these bacteria and their metabolites could be potential alternatives to conventional chemical and radiation therapies. Given their superior immunomodulatory and anti-cancer effects and lack of side effects, commensal bacteria derived from healthy humans are currently used as next-generation probiotics. This review summarizes current findings on these probiotic properties and anti-cancer activities of healthy human commensal bacteria. Additionally, the review focuses on small metabolites, proteins, and enzymes secreted by human commensal bacteria for their therapeutic applications against cancer. Further, utilizing a protein engineering strategy to reduce the toxicity of L-asparaginase, an enzyme-based anti-leukemia drug used for the last forty years, is also discussed. A possible workflow outline for isolating, identifying, screening, and characterizing human commensal bacterial strains for their therapeutic applications in cancer treatment is also proposed. This review emphasizes the need to explore various human commensal bacteria, not just mainstream lactic acid bacteria, for novel cancer therapeutics that provide multiple health benefits.