乳铁蛋白通过调节巨噬细胞AMPK/mTOR信号依赖性自噬影响动脉粥样硬化进展。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bing Xia, Jingwei Liang, Yanlin Lu, Jiuyang Ding, Jin Peng, Fangqin Li, Jialin Dai, Yubo Liu, Jie Wang, Changwu Wan, Peng Luo
{"title":"乳铁蛋白通过调节巨噬细胞AMPK/mTOR信号依赖性自噬影响动脉粥样硬化进展。","authors":"Bing Xia, Jingwei Liang, Yanlin Lu, Jiuyang Ding, Jin Peng, Fangqin Li, Jialin Dai, Yubo Liu, Jie Wang, Changwu Wan, Peng Luo","doi":"10.1038/s41598-025-95181-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to explore the role of lactoferrin (LTF) in atherosclerosis (AS) and its possible mechanisms. Human left coronary artery tissues were collected and divided into control (CON), coronary heart disease (CHD) and sudden coronary death (SCD) groups. Pathologic changes (including changes in the coronary plaque area, necrotic core, collagen fibers, and foam cell content) were observed. The LTF, P62, and 4-hydroxynonenal (4-HNE) expression levels were assessed. The ApoE<sup>-/-</sup> AS mouse model was established. The pathological changes and related protein levels were analyzed after autophagy inhibition. The foam cell model was constructed using an ox-LDL-induced human monocyte line, THP-1. The LTF, BECN1, LC3-II/I, AMP-activated protein kinase (AMPK)/the mammalian target of rapamycin (mTOR) pathway proteins, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and 4-HNE expressions were then detected after silencing of LTF or BECN1. Plaque stability was significantly lower in the SCD group compared to the non-SCD group (p < 0.05). LTF, P62 and 4-HNE levels in plaques increased as plaque stability decreased, and LTF was significantly correlated with plaque progression and autophagy levels. Autophagy inhibition by U0126 leads to the worsening of aortic luminal stenosis, increased necrotic core and foam cell deposits, decreased autophagosomes, reduced LTF expression, and upregulated P62 expression in AS mice. It was further demonstrated that LTF expression correlates with autophagy. LTF expression was increased in ox-LDL-treated THP-1 cells, and silencing BECN1 and/or LTF increased mTOR phosphorylation and 4-HNE levels, inhibited BECN1 and LC3 II expression and AMPK activation, and simultaneously decreased the Bcl-2/Bax ratio. LTF might alleviate AS pathology through accelerating the AMPK/mTOR pathway, and suggested that LTF may be a potential predictive molecule for AS.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10585"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lactoferrin influences atherosclerotic progression by modulating macrophagic AMPK/mTOR signaling-dependent autophagy.\",\"authors\":\"Bing Xia, Jingwei Liang, Yanlin Lu, Jiuyang Ding, Jin Peng, Fangqin Li, Jialin Dai, Yubo Liu, Jie Wang, Changwu Wan, Peng Luo\",\"doi\":\"10.1038/s41598-025-95181-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to explore the role of lactoferrin (LTF) in atherosclerosis (AS) and its possible mechanisms. Human left coronary artery tissues were collected and divided into control (CON), coronary heart disease (CHD) and sudden coronary death (SCD) groups. Pathologic changes (including changes in the coronary plaque area, necrotic core, collagen fibers, and foam cell content) were observed. The LTF, P62, and 4-hydroxynonenal (4-HNE) expression levels were assessed. The ApoE<sup>-/-</sup> AS mouse model was established. The pathological changes and related protein levels were analyzed after autophagy inhibition. The foam cell model was constructed using an ox-LDL-induced human monocyte line, THP-1. The LTF, BECN1, LC3-II/I, AMP-activated protein kinase (AMPK)/the mammalian target of rapamycin (mTOR) pathway proteins, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and 4-HNE expressions were then detected after silencing of LTF or BECN1. Plaque stability was significantly lower in the SCD group compared to the non-SCD group (p < 0.05). LTF, P62 and 4-HNE levels in plaques increased as plaque stability decreased, and LTF was significantly correlated with plaque progression and autophagy levels. Autophagy inhibition by U0126 leads to the worsening of aortic luminal stenosis, increased necrotic core and foam cell deposits, decreased autophagosomes, reduced LTF expression, and upregulated P62 expression in AS mice. It was further demonstrated that LTF expression correlates with autophagy. LTF expression was increased in ox-LDL-treated THP-1 cells, and silencing BECN1 and/or LTF increased mTOR phosphorylation and 4-HNE levels, inhibited BECN1 and LC3 II expression and AMPK activation, and simultaneously decreased the Bcl-2/Bax ratio. LTF might alleviate AS pathology through accelerating the AMPK/mTOR pathway, and suggested that LTF may be a potential predictive molecule for AS.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10585\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95181-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95181-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨乳铁蛋白(LTF)在动脉粥样硬化(AS)中的作用及其可能的机制。研究人员采集了人体左冠状动脉组织,并将其分为对照组(CON)、冠心病组(CHD)和冠心病猝死组(SCD)。观察病理变化(包括冠状动脉斑块面积、坏死核心、胶原纤维和泡沫细胞含量的变化)。评估了LTF、P62和4-羟基壬烯醛(4-HNE)的表达水平。建立了载脂蛋白E-/-AS小鼠模型。分析了抑制自噬后的病理变化和相关蛋白水平。利用氧化-LDL诱导的人单核细胞系THP-1构建了泡沫细胞模型。抑制LTF或BECN1后,检测了LTF、BECN1、LC3-II/I、AMP激活蛋白激酶(AMPK)/哺乳动物雷帕霉素靶蛋白(mTOR)通路蛋白、B细胞淋巴瘤-2(Bcl-2)、Bcl-2相关X蛋白(Bax)和4-HNE的表达。与非 SCD 组相比,SCD 组的斑块稳定性明显降低(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lactoferrin influences atherosclerotic progression by modulating macrophagic AMPK/mTOR signaling-dependent autophagy.

Lactoferrin influences atherosclerotic progression by modulating macrophagic AMPK/mTOR signaling-dependent autophagy.

Lactoferrin influences atherosclerotic progression by modulating macrophagic AMPK/mTOR signaling-dependent autophagy.

Lactoferrin influences atherosclerotic progression by modulating macrophagic AMPK/mTOR signaling-dependent autophagy.

This study aimed to explore the role of lactoferrin (LTF) in atherosclerosis (AS) and its possible mechanisms. Human left coronary artery tissues were collected and divided into control (CON), coronary heart disease (CHD) and sudden coronary death (SCD) groups. Pathologic changes (including changes in the coronary plaque area, necrotic core, collagen fibers, and foam cell content) were observed. The LTF, P62, and 4-hydroxynonenal (4-HNE) expression levels were assessed. The ApoE-/- AS mouse model was established. The pathological changes and related protein levels were analyzed after autophagy inhibition. The foam cell model was constructed using an ox-LDL-induced human monocyte line, THP-1. The LTF, BECN1, LC3-II/I, AMP-activated protein kinase (AMPK)/the mammalian target of rapamycin (mTOR) pathway proteins, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and 4-HNE expressions were then detected after silencing of LTF or BECN1. Plaque stability was significantly lower in the SCD group compared to the non-SCD group (p < 0.05). LTF, P62 and 4-HNE levels in plaques increased as plaque stability decreased, and LTF was significantly correlated with plaque progression and autophagy levels. Autophagy inhibition by U0126 leads to the worsening of aortic luminal stenosis, increased necrotic core and foam cell deposits, decreased autophagosomes, reduced LTF expression, and upregulated P62 expression in AS mice. It was further demonstrated that LTF expression correlates with autophagy. LTF expression was increased in ox-LDL-treated THP-1 cells, and silencing BECN1 and/or LTF increased mTOR phosphorylation and 4-HNE levels, inhibited BECN1 and LC3 II expression and AMPK activation, and simultaneously decreased the Bcl-2/Bax ratio. LTF might alleviate AS pathology through accelerating the AMPK/mTOR pathway, and suggested that LTF may be a potential predictive molecule for AS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信