沃伯格效应:癌症中被破坏的线粒体-核通讯。

IF 12.1 1区 医学 Q1 ONCOLOGY
Haowen Jiang , Jiangbin Ye
{"title":"沃伯格效应:癌症中被破坏的线粒体-核通讯。","authors":"Haowen Jiang ,&nbsp;Jiangbin Ye","doi":"10.1016/j.semcancer.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.</div></div>","PeriodicalId":21594,"journal":{"name":"Seminars in cancer biology","volume":"112 ","pages":"Pages 93-111"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Warburg effect: The hacked mitochondrial-nuclear communication in cancer\",\"authors\":\"Haowen Jiang ,&nbsp;Jiangbin Ye\",\"doi\":\"10.1016/j.semcancer.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.</div></div>\",\"PeriodicalId\":21594,\"journal\":{\"name\":\"Seminars in cancer biology\",\"volume\":\"112 \",\"pages\":\"Pages 93-111\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in cancer biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044579X25000537\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cancer biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044579X25000537","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体-核通讯对维持细胞稳态至关重要。这种交流始于线粒体感知环境信号,并通过逆行级联将信号传递给细胞核,涉及代谢信号,如表观遗传修饰底物、ATP和AMP水平、钙通量等。这些信号通过顺行反馈级联作用,将细胞的代谢状态告知细胞核,重塑表观基因组,调控基因表达,调节线粒体功能和动力学,从而控制细胞命运和生理。这种交流的中断可导致细胞功能障碍和疾病进展,特别是在癌症中。Warburg效应是癌症的代谢标志,其特征是线粒体呼吸破坏和糖酵解产生的乳酸增加。这种代谢重编程重新连接逆行信号,导致表观遗传变化和去分化,进一步重编程线粒体功能并促进致癌。了解这些过程及其与肿瘤发生的联系对于揭示肿瘤发生机制至关重要。针对这些中断通路的治疗策略,包括代谢和表观遗传成分,为癌症治疗提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Warburg effect: The hacked mitochondrial-nuclear communication in cancer
Mitochondrial-nuclear communication is vital for maintaining cellular homeostasis. This communication begins with mitochondria sensing environmental cues and transmitting signals to the nucleus through the retrograde cascade, involving metabolic signals such as substrates for epigenetic modifications, ATP and AMP levels, calcium flux, etc. These signals inform the nucleus about the cell's metabolic state, remodel epigenome and regulate gene expression, and modulate mitochondrial function and dynamics through the anterograde feedback cascade to control cell fate and physiology. Disruption of this communication can lead to cellular dysfunction and disease progression, particularly in cancer. The Warburg effect is the metabolic hallmark of cancer, characterized by disruption of mitochondrial respiration and increased lactate generation from glycolysis. This metabolic reprogramming rewires retrograde signaling, leading to epigenetic changes and dedifferentiation, further reprogramming mitochondrial function and promoting carcinogenesis. Understanding these processes and their link to tumorigenesis is crucial for uncovering tumorigenesis mechanisms. Therapeutic strategies targeting these disrupted pathways, including metabolic and epigenetic components, provide promising avenues for cancer treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in cancer biology
Seminars in cancer biology 医学-肿瘤学
CiteScore
26.80
自引率
4.10%
发文量
347
审稿时长
15.1 weeks
期刊介绍: Seminars in Cancer Biology (YSCBI) is a specialized review journal that focuses on the field of molecular oncology. Its primary objective is to keep scientists up-to-date with the latest developments in this field. The journal adopts a thematic approach, dedicating each issue to an important topic of interest to cancer biologists. These topics cover a range of research areas, including the underlying genetic and molecular causes of cellular transformation and cancer, as well as the molecular basis of potential therapies. To ensure the highest quality and expertise, every issue is supervised by a guest editor or editors who are internationally recognized experts in the respective field. Each issue features approximately eight to twelve authoritative invited reviews that cover various aspects of the chosen subject area. The ultimate goal of each issue of YSCBI is to offer a cohesive, easily comprehensible, and engaging overview of the selected topic. The journal strives to provide scientists with a coordinated and lively examination of the latest developments in the field of molecular oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信