{"title":"构建基于机器学习的老年脓毒症患者预警模型。","authors":"Xuejie Ma, Yaoqiong Mai, Yin Ma, Xiaowei Ma","doi":"10.1038/s41598-025-95604-8","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is a serious threat to human life. Early prediction of high-risk populations for sepsis is necessary especially in elderly patients. Artificial intelligence shows benefits in early warning. The aim of the study was to construct an early machine warning model for elderly sepsis patients and evaluate its performance. We collected elderly patients from General Hospital of Ningxia Medical University emergency department and intensive care unit from 01 January 2021 to 01 August 2023. The clinical data was divided into a training set and a test set. A total of 2976 patients and 12 features were screened. We used 8 machine learning models to build the warning model. In conclusion, we developed a model based on XGBoost with an AUROC of 0.971, AUPRC of 0.862, accuracy of 0.95, specificity of 0.964 and F1 score of 0.776. Of all the features, baseline APTT played the most important role, followed by baseline lymphocyte count. Higher level of baseline APTT and lower level of baseline lymphocyte count may indicate higher risk of sepsis occurrence. We developed a high-performance early warning model for sepsis in old age based on machine learning in order to facilitate early treatment but also need further external validation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10580"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950175/pdf/","citationCount":"0","resultStr":"{\"title\":\"Constructing an early warning model for elderly sepsis patients based on machine learning.\",\"authors\":\"Xuejie Ma, Yaoqiong Mai, Yin Ma, Xiaowei Ma\",\"doi\":\"10.1038/s41598-025-95604-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is a serious threat to human life. Early prediction of high-risk populations for sepsis is necessary especially in elderly patients. Artificial intelligence shows benefits in early warning. The aim of the study was to construct an early machine warning model for elderly sepsis patients and evaluate its performance. We collected elderly patients from General Hospital of Ningxia Medical University emergency department and intensive care unit from 01 January 2021 to 01 August 2023. The clinical data was divided into a training set and a test set. A total of 2976 patients and 12 features were screened. We used 8 machine learning models to build the warning model. In conclusion, we developed a model based on XGBoost with an AUROC of 0.971, AUPRC of 0.862, accuracy of 0.95, specificity of 0.964 and F1 score of 0.776. Of all the features, baseline APTT played the most important role, followed by baseline lymphocyte count. Higher level of baseline APTT and lower level of baseline lymphocyte count may indicate higher risk of sepsis occurrence. We developed a high-performance early warning model for sepsis in old age based on machine learning in order to facilitate early treatment but also need further external validation.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10580\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95604-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95604-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Constructing an early warning model for elderly sepsis patients based on machine learning.
Sepsis is a serious threat to human life. Early prediction of high-risk populations for sepsis is necessary especially in elderly patients. Artificial intelligence shows benefits in early warning. The aim of the study was to construct an early machine warning model for elderly sepsis patients and evaluate its performance. We collected elderly patients from General Hospital of Ningxia Medical University emergency department and intensive care unit from 01 January 2021 to 01 August 2023. The clinical data was divided into a training set and a test set. A total of 2976 patients and 12 features were screened. We used 8 machine learning models to build the warning model. In conclusion, we developed a model based on XGBoost with an AUROC of 0.971, AUPRC of 0.862, accuracy of 0.95, specificity of 0.964 and F1 score of 0.776. Of all the features, baseline APTT played the most important role, followed by baseline lymphocyte count. Higher level of baseline APTT and lower level of baseline lymphocyte count may indicate higher risk of sepsis occurrence. We developed a high-performance early warning model for sepsis in old age based on machine learning in order to facilitate early treatment but also need further external validation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.