E A Shishkina, E Khramova, N Mogilnikova, G A Tryapitsina, E A Pryakhin
{"title":"卵中90Sr对银鸥胚胎的内辐射剂量。","authors":"E A Shishkina, E Khramova, N Mogilnikova, G A Tryapitsina, E A Pryakhin","doi":"10.1007/s00411-025-01119-1","DOIUrl":null,"url":null,"abstract":"<p><p>Birds are bioindicators of anthropogenic environmental stress, including the changes caused by radioactive contamination of ecosystems. Any radiation-induced biological effects can be the consequence of exposure both after hatching and during the embryonic period. Therefore, it is necessary to quantify radiation doses to the embryo when interpreting observed radiobiological effects in birds. This is especially true for areas contaminated with Ca-like <sup>90</sup>Sr. The levels of radionuclide accumulation in the eggshell can be extremely high, which leads to chronic embryo exposure. Consequently, the objective of the present study was to develop a method to calculate the dose to a herring gull embryo exposed to <sup>90</sup>Sr distributed in egg compartments (shell, embryo body, albumen and yolk). To achieve this, the time-dependent Sr distribution in the egg compartments was modeled. Additionally, dosimetric modeling was carried out to obtain dose factors that convert the radionuclide activity in different compartments of an egg to embryo dose at various stages of embryogenesis. It has been shown that the accumulated dose to the herring gull embryo can be calculated based on <sup>90</sup>Sr total activity in the egg using a dose conversion factor of 0.44 μGy Bq<sup>-1</sup>. Since the eggshell contains more than 90% of total <sup>90</sup>Sr activity, the conversion from eggshell activity to embryo dose would be practically the same as that from the total egg activity - 0.46 μGy Bq<sup>-1</sup>. The main dose fraction (~ 99%) accumulates at the last stage of embryogenesis (from 13 to 26 days). The proposed method allows for an estimation of individual radiation doses to embryos based on eggshell radiometry. This creates a new opportunity to study how dangerous any radiation exposure of birds could be during the embryonic period.</p>","PeriodicalId":21002,"journal":{"name":"Radiation and Environmental Biophysics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Internal radiation dose to the herring gull embryo due to <sup>90</sup>Sr in the egg.\",\"authors\":\"E A Shishkina, E Khramova, N Mogilnikova, G A Tryapitsina, E A Pryakhin\",\"doi\":\"10.1007/s00411-025-01119-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Birds are bioindicators of anthropogenic environmental stress, including the changes caused by radioactive contamination of ecosystems. Any radiation-induced biological effects can be the consequence of exposure both after hatching and during the embryonic period. Therefore, it is necessary to quantify radiation doses to the embryo when interpreting observed radiobiological effects in birds. This is especially true for areas contaminated with Ca-like <sup>90</sup>Sr. The levels of radionuclide accumulation in the eggshell can be extremely high, which leads to chronic embryo exposure. Consequently, the objective of the present study was to develop a method to calculate the dose to a herring gull embryo exposed to <sup>90</sup>Sr distributed in egg compartments (shell, embryo body, albumen and yolk). To achieve this, the time-dependent Sr distribution in the egg compartments was modeled. Additionally, dosimetric modeling was carried out to obtain dose factors that convert the radionuclide activity in different compartments of an egg to embryo dose at various stages of embryogenesis. It has been shown that the accumulated dose to the herring gull embryo can be calculated based on <sup>90</sup>Sr total activity in the egg using a dose conversion factor of 0.44 μGy Bq<sup>-1</sup>. Since the eggshell contains more than 90% of total <sup>90</sup>Sr activity, the conversion from eggshell activity to embryo dose would be practically the same as that from the total egg activity - 0.46 μGy Bq<sup>-1</sup>. The main dose fraction (~ 99%) accumulates at the last stage of embryogenesis (from 13 to 26 days). The proposed method allows for an estimation of individual radiation doses to embryos based on eggshell radiometry. This creates a new opportunity to study how dangerous any radiation exposure of birds could be during the embryonic period.</p>\",\"PeriodicalId\":21002,\"journal\":{\"name\":\"Radiation and Environmental Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation and Environmental Biophysics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00411-025-01119-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation and Environmental Biophysics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00411-025-01119-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Internal radiation dose to the herring gull embryo due to 90Sr in the egg.
Birds are bioindicators of anthropogenic environmental stress, including the changes caused by radioactive contamination of ecosystems. Any radiation-induced biological effects can be the consequence of exposure both after hatching and during the embryonic period. Therefore, it is necessary to quantify radiation doses to the embryo when interpreting observed radiobiological effects in birds. This is especially true for areas contaminated with Ca-like 90Sr. The levels of radionuclide accumulation in the eggshell can be extremely high, which leads to chronic embryo exposure. Consequently, the objective of the present study was to develop a method to calculate the dose to a herring gull embryo exposed to 90Sr distributed in egg compartments (shell, embryo body, albumen and yolk). To achieve this, the time-dependent Sr distribution in the egg compartments was modeled. Additionally, dosimetric modeling was carried out to obtain dose factors that convert the radionuclide activity in different compartments of an egg to embryo dose at various stages of embryogenesis. It has been shown that the accumulated dose to the herring gull embryo can be calculated based on 90Sr total activity in the egg using a dose conversion factor of 0.44 μGy Bq-1. Since the eggshell contains more than 90% of total 90Sr activity, the conversion from eggshell activity to embryo dose would be practically the same as that from the total egg activity - 0.46 μGy Bq-1. The main dose fraction (~ 99%) accumulates at the last stage of embryogenesis (from 13 to 26 days). The proposed method allows for an estimation of individual radiation doses to embryos based on eggshell radiometry. This creates a new opportunity to study how dangerous any radiation exposure of birds could be during the embryonic period.
期刊介绍:
This journal is devoted to fundamental and applied issues in radiation research and biophysics. The topics may include:
Biophysics of ionizing radiation: radiation physics and chemistry, radiation dosimetry, radiobiology, radioecology, biophysical foundations of medical applications of radiation, and radiation protection.
Biological effects of radiation: experimental or theoretical work on molecular or cellular effects; relevance of biological effects for risk assessment; biological effects of medical applications of radiation; relevance of radiation for biosphere and in space; modelling of ecosystems; modelling of transport processes of substances in biotic systems.
Risk assessment: epidemiological studies of cancer and non-cancer effects; quantification of risk including exposures to radiation and confounding factors
Contributions to these topics may include theoretical-mathematical and experimental material, as well as description of new techniques relevant for the study of these issues. They can range from complex radiobiological phenomena to issues in health physics and environmental protection.