Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin
{"title":"脑电运动图像解码的特征感知域不变表示学习。","authors":"Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin","doi":"10.1038/s41598-025-95178-5","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10664"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feature-aware domain invariant representation learning for EEG motor imagery decoding.\",\"authors\":\"Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin\",\"doi\":\"10.1038/s41598-025-95178-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10664\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95178-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95178-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Feature-aware domain invariant representation learning for EEG motor imagery decoding.
Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.