脑电运动图像解码的特征感知域不变表示学习。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin
{"title":"脑电运动图像解码的特征感知域不变表示学习。","authors":"Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin","doi":"10.1038/s41598-025-95178-5","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"10664"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950222/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feature-aware domain invariant representation learning for EEG motor imagery decoding.\",\"authors\":\"Jianxiu Li, Jiaxin Shi, Pengda Yu, Xiaokai Yan, Yuting Lin\",\"doi\":\"10.1038/s41598-025-95178-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"10664\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950222/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-95178-5\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-95178-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基于脑电图(EEG)的运动图像(MI)广泛应用于临床康复和基于虚拟现实的运动控制。解码基于脑电图的MI信号具有挑战性,因为原始信号表示具有固有的时空变异性,再加上低信噪比(SNR),这阻碍了提取干净且鲁棒的特征。为了解决这个问题,我们提出了一种多尺度时空域不变表示学习方法,称为MSDI。该方法将原始信号分解为空间分量和时间分量,从两个分量中提取多尺度的不变特征。为了进一步将表征约束到不变域,我们引入了特征感知的移位操作,该操作基于特征统计和特征度量对表征进行重新采样,从而将特征投影到域不变空间中。我们通过两个公开可用的数据集BNCI2014-001和BNCI2014-004来评估我们提出的方法,并在这两个数据集上展示了最先进的性能。此外,我们的方法具有优异的时间效率和抗噪声性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feature-aware domain invariant representation learning for EEG motor imagery decoding.

Feature-aware domain invariant representation learning for EEG motor imagery decoding.

Feature-aware domain invariant representation learning for EEG motor imagery decoding.

Feature-aware domain invariant representation learning for EEG motor imagery decoding.

Electroencephalography (EEG)-based motor imagery (MI) is extensively utilized in clinical rehabilitation and virtual reality-based movement control. Decoding EEG-based MI signals is challenging because of the inherent spatio-temporal variability of the original signal representation, coupled with a low signal-to-noise ratio (SNR), which impedes the extraction of clean and robust features. To address this issue, we propose a multi-scale spatio-temporal domain-invariant representation learning method, termed MSDI. By decomposing the original signal into spatial and temporal components, the proposed method extracts invariant features at multiple scales from both components. To further constrain the representation to invariant domains, we introduce a feature-aware shift operation that resamples the representation based on its feature statistics and feature measure, thereby projecting the features into a domain-invariant space. We evaluate our proposed method via two publicly available datasets, BNCI2014-001 and BNCI2014-004, demonstrating state-of-the-art performance on both datasets. Furthermore, our method exhibits superior time efficiency and noise resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信