{"title":"基因型环境互作对甘蓝型油菜种子含油量影响的遗传和转录组分析。","authors":"Xu Han, Xiaowei Wu, Yawen Zhang, Qingqing Tang, Lingju Zeng, Yunhao Liu, Yuyan Xiang, Keqin Hou, Shuai Fang, Weixia Lei, Haojie Li, Shan Tang, Hu Zhao, Yan Peng, Xuan Yao, Tingting Guo, Yuan-Ming Zhang, Liang Guo","doi":"10.1093/plcell/koaf062","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic and transcriptome analyses of the effect of genotype-by-environment interactions on Brassica napus seed oil content.\",\"authors\":\"Xu Han, Xiaowei Wu, Yawen Zhang, Qingqing Tang, Lingju Zeng, Yunhao Liu, Yuyan Xiang, Keqin Hou, Shuai Fang, Weixia Lei, Haojie Li, Shan Tang, Hu Zhao, Yan Peng, Xuan Yao, Tingting Guo, Yuan-Ming Zhang, Liang Guo\",\"doi\":\"10.1093/plcell/koaf062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf062\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf062","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
作物性状的分子基础是复杂的,基因-环境相互作用(GEIs)影响表型。然而,油料作物种子含油量与数量性状核苷酸(QTN)-环境相互作用(qei)和环境相互作用(gei)的研究尚属罕见。本研究通过全基因组关联研究,检测了油菜SOC的11个环境特异性QTNs和10个稳定性QTNs,以及11个qei。加权基因共表达网络分析确定了8个环境-发育基因共表达模块,其中与SOC和环境相关的特征基因解释了大部分基因表达差异。结合多组学数据集的信息,预测了17个候选基因和11个候选gei。以气候指数检测到的环境特异性QTN qspOC.A02.1和QEI qeOC.A02.1为协变量,挖掘了一个候选GEI, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5)。BnaA02。LSH5在种子发育早期呈高表达,且在不同种植地点的表达差异显著,与光相关气候指标的表达趋势相反。BnaA02。lsh5和BnaC02。与野生型相比,lsh5双突变体的有机碳含量、下胚轴长度、光合作用以及碳和能量相关代谢产物均较低。此外,BnaA02。LSH5转录直接抑制BnaA02。pMDH2在脂肪酸β-氧化和光合电子传递中的作用。我们认为BnaLSH5在光照条件下影响种子油脂积累。本研究为培育适应特定环境的高油种质提供了依据。
Genetic and transcriptome analyses of the effect of genotype-by-environment interactions on Brassica napus seed oil content.
The molecular basis underlying crop traits is complex, with gene-by-environment interactions (GEIs) affecting phenotypes. However, quantitative trait nucleotide (QTN)-by-environment interactions (QEIs) and GEIs for seed oil content (SOC) in oil crops are rare. Here, we detected 11 environmentally specific and 10 stable additive QTNs and 11 QEIs for SOC in rapeseed (Brassica napus) using genome-wide association studies. Weighted gene co-expression network analysis identified 8 Environmental-Developmental Gene co-expression Modules for which the eigengenes correlated with SOC and the environment explained a large proportion of the variance in gene expression. By incorporating information from the multi-omics dataset, 17 candidate genes and 11 candidate GEIs for SOC were predicted. We mined 1 GEI candidate, LIGHT-DEPENDENT SHORT HYPOCOTYLS5 (LSH5), around the environmentally specific QTN qspOC.A02.1 and QEI qeOC.A02.1 detected by climatic indices as covariates. BnaA02.LSH5 was highly expressed in early seed development, and its expression varied significantly across planting sites, with a trend opposite to light-related climatic indices. The BnaA02.lsh5 and BnaC02.lsh5 double mutants had lower SOC, hypocotyl length, photosynthesis, and carbon- and energy-related metabolites compared with wild type. Moreover, BnaA02.LSH5 transcriptionally directly repressed BnaA02.pMDH2 in fatty acid β-oxidation and photosynthetic electron transport. We propose that BnaLSH5 affects seed oil accumulation in response to light intensity. This study provides a basis for creating high-oil germplasm that is adapted to specific environments.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.