当大型语言模型遇到进化算法:潜在的增强和挑战。

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-03-27 eCollection Date: 2025-01-01 DOI:10.34133/research.0646
Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang
{"title":"当大型语言模型遇到进化算法:潜在的增强和挑战。","authors":"Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang","doi":"10.34133/research.0646","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0646"},"PeriodicalIF":11.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948732/pdf/","citationCount":"0","resultStr":"{\"title\":\"When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges.\",\"authors\":\"Chao Wang, Jiaxuan Zhao, Licheng Jiao, Lingling Li, Fang Liu, Shuyuan Yang\",\"doi\":\"10.34133/research.0646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.</p>\",\"PeriodicalId\":21120,\"journal\":{\"name\":\"Research\",\"volume\":\"8 \",\"pages\":\"0646\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948732/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.34133/research.0646\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0646","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

预训练的大型语言模型(llm)在生成自然文本方面表现出强大的能力。进化算法(EAs)可以为复杂的现实世界问题发现不同的解决方案。基于文本生成和进化的共同集体性和指向性,本文首先从微观层面阐述了llm和ea在概念上的相似之处,包括多个一对一的关键特征:令牌表示和个体表示、位置编码和适应度塑造、位置嵌入和选择、变形器块和复制、模型训练和参数自适应。这些相似之处突出了llm和ea技术进步的潜在机会。随后,我们从宏观角度分析了现有的跨学科研究,以揭示关键挑战,特别关注进化微调和法学硕士增强的ea。这些分析不仅为llm背后的进化机制提供了见解,而且为增强人工智能体的能力提供了潜在的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges.

Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信