考虑黏性耗散和陀螺仪微生物影响的MHD生物对流Williamson纳米流体在指数拉伸薄片上流动的解析解。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-27 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0306358
Siva Sankari, M Eswara Rao, Awatif M A Elsiddieg, Waris Khan, O D Makinde, Taoufik Saidani, Naoufel Kraiem, Hakim Al Garalleh
{"title":"考虑黏性耗散和陀螺仪微生物影响的MHD生物对流Williamson纳米流体在指数拉伸薄片上流动的解析解。","authors":"Siva Sankari, M Eswara Rao, Awatif M A Elsiddieg, Waris Khan, O D Makinde, Taoufik Saidani, Naoufel Kraiem, Hakim Al Garalleh","doi":"10.1371/journal.pone.0306358","DOIUrl":null,"url":null,"abstract":"<p><p>Nanofluids achieve high thermal transport efficiency by uniformly dispersing small particles in base liquids, significantly enhancing the heat transfer coefficients and making them vital in various thermal engineering applications. The research examines non-uniform thermal conductivity and activation energy critical for accurately describing fluid behaviour. The study incorporates bioconvection to prevent nanoparticle settling and ensure fluid stability through motile microorganisms. The governing partial differential equations are converted into ordinary differential equations that are solved using the Homotopy Analysis Method (HAM), to provide a strong mathematical framework for the analysis. This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. This paper investigates a nano-Williamson fluid (NWF) flow over an exponentially stretched surface in a permeable medium, considering essential variables such as mixed convection, electromagnetic forces, non-linear thermal radiation, heat production, Joule heating and ohmic dissipation that are essential for understanding its complicated behavior.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0306358"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analytical solution of MHD bioconvection Williamson nanofluid flow over an exponentially stretching sheet with the impact of viscous dissipation and gyrotactic microorganism.\",\"authors\":\"Siva Sankari, M Eswara Rao, Awatif M A Elsiddieg, Waris Khan, O D Makinde, Taoufik Saidani, Naoufel Kraiem, Hakim Al Garalleh\",\"doi\":\"10.1371/journal.pone.0306358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanofluids achieve high thermal transport efficiency by uniformly dispersing small particles in base liquids, significantly enhancing the heat transfer coefficients and making them vital in various thermal engineering applications. The research examines non-uniform thermal conductivity and activation energy critical for accurately describing fluid behaviour. The study incorporates bioconvection to prevent nanoparticle settling and ensure fluid stability through motile microorganisms. The governing partial differential equations are converted into ordinary differential equations that are solved using the Homotopy Analysis Method (HAM), to provide a strong mathematical framework for the analysis. This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. This paper investigates a nano-Williamson fluid (NWF) flow over an exponentially stretched surface in a permeable medium, considering essential variables such as mixed convection, electromagnetic forces, non-linear thermal radiation, heat production, Joule heating and ohmic dissipation that are essential for understanding its complicated behavior.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 3\",\"pages\":\"e0306358\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11949506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0306358\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0306358","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

纳米流体通过在基础液体中均匀分散小颗粒实现了高热传导效率,显著提高了传热系数,使其在各种热能工程应用中发挥重要作用。这项研究探讨了非均匀导热性和活化能,它们对于准确描述流体行为至关重要。研究结合了生物对流,以防止纳米粒子沉降,并通过运动微生物确保流体稳定性。理事偏微分方程被转换成常微分方程,使用同调分析法(HAM)进行求解,为分析提供了一个强大的数学框架。该研究发现,流体的速度会随着磁约束的增强和时间的延缓而降低。然而,在辐射和吸热/放热参数较高时,传热会增加,但随着普朗特数的增加,传热会降低,而施密特数的增加会导致浓度曲线的降低。本文研究了渗透介质中指数拉伸表面上的纳米威廉森流体(NWF)流动,考虑了混合对流、电磁力、非线性热辐射、产热、焦耳热和欧姆耗散等基本变量,这些变量对于理解其复杂行为至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical solution of MHD bioconvection Williamson nanofluid flow over an exponentially stretching sheet with the impact of viscous dissipation and gyrotactic microorganism.

Nanofluids achieve high thermal transport efficiency by uniformly dispersing small particles in base liquids, significantly enhancing the heat transfer coefficients and making them vital in various thermal engineering applications. The research examines non-uniform thermal conductivity and activation energy critical for accurately describing fluid behaviour. The study incorporates bioconvection to prevent nanoparticle settling and ensure fluid stability through motile microorganisms. The governing partial differential equations are converted into ordinary differential equations that are solved using the Homotopy Analysis Method (HAM), to provide a strong mathematical framework for the analysis. This study finds that the velocity of the fluid decreases with magnetic constraint intensification and time retardation. however, heat transfer increases at higher radiation, and heat absorption/emission parameters but decreases with a higher Prandtl number, while an increased Schmidt number leads to decreased concentration profiles. This paper investigates a nano-Williamson fluid (NWF) flow over an exponentially stretched surface in a permeable medium, considering essential variables such as mixed convection, electromagnetic forces, non-linear thermal radiation, heat production, Joule heating and ohmic dissipation that are essential for understanding its complicated behavior.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信