Francesco Mantegna , Emanuele Olivetti , Philipp Schwedhelm , Daniel Baldauf
{"title":"Covariance-based decoding reveals a category-specific functional connectivity network for imagined visual objects","authors":"Francesco Mantegna , Emanuele Olivetti , Philipp Schwedhelm , Daniel Baldauf","doi":"10.1016/j.neuroimage.2025.121171","DOIUrl":null,"url":null,"abstract":"<div><div>The coordination of different brain regions is required for the visual imagery of complex objects (e.g., faces and places). Short-range connectivity within sensory areas is necessary to construct the mental image. Long-range connectivity between control and sensory areas is necessary to re-instantiate and maintain the mental image. While dynamic changes in functional connectivity are expected during visual imagery, it is unclear whether a category-specific network exists in which the strength and the spatial destination of the connections vary depending on the imagery target. In this magnetoencephalography study, we used a minimally constrained experimental paradigm wherein imagery categories were prompted using visual word cues only, and we decoded face versus place imagery based on their underlying functional connectivity patterns as estimated from the spatial covariance across brain regions. A subnetwork analysis further disentangled the contribution of different connections. The results show that face and place imagery can be decoded from both short-range and long-range connections. Overall, the results show that imagined object categories can be distinguished based on functional connectivity patterns observed in a category-specific network. Notably, functional connectivity estimates rely on purely endogenous brain signals suggesting that an external reference is not necessary to elicit such category-specific network dynamics.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"311 ","pages":"Article 121171"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Covariance-based decoding reveals a category-specific functional connectivity network for imagined visual objects
The coordination of different brain regions is required for the visual imagery of complex objects (e.g., faces and places). Short-range connectivity within sensory areas is necessary to construct the mental image. Long-range connectivity between control and sensory areas is necessary to re-instantiate and maintain the mental image. While dynamic changes in functional connectivity are expected during visual imagery, it is unclear whether a category-specific network exists in which the strength and the spatial destination of the connections vary depending on the imagery target. In this magnetoencephalography study, we used a minimally constrained experimental paradigm wherein imagery categories were prompted using visual word cues only, and we decoded face versus place imagery based on their underlying functional connectivity patterns as estimated from the spatial covariance across brain regions. A subnetwork analysis further disentangled the contribution of different connections. The results show that face and place imagery can be decoded from both short-range and long-range connections. Overall, the results show that imagined object categories can be distinguished based on functional connectivity patterns observed in a category-specific network. Notably, functional connectivity estimates rely on purely endogenous brain signals suggesting that an external reference is not necessary to elicit such category-specific network dynamics.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.