IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-18 DOI:10.3390/nano15060459
Yang Peng, Jun Liu, Jintao Fu, Ying Luo, Xiangrui Zhao, Xingzhan Wei
{"title":"Emerging Thermal Detectors Based on Low-Dimensional Materials: Strategies and Progress.","authors":"Yang Peng, Jun Liu, Jintao Fu, Ying Luo, Xiangrui Zhao, Xingzhan Wei","doi":"10.3390/nano15060459","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal detectors, owing to their broadband spectral response and ambient operating temperature capabilities, represent a key technological avenue for surpassing the inherent limitations of traditional photon detectors. A fundamental trade-off exists between the thermal properties and the response performance of conventional thermosensitive materials (e.g., vanadium oxide and amorphous silicon), significantly hindering the simultaneous enhancement of device sensitivity and response speed. Recently, low-dimensional materials, with their atomically thin thickness leading to ultralow thermal capacitance and tunable thermoelectric properties, have emerged as a promising perspective for addressing these bottlenecks. Integrating low-dimensional materials with metasurfaces enables the utilization of subwavelength periodic configurations and localized electromagnetic field enhancements. This not only overcomes the limitation of low light absorption efficiency in thermal detectors based on low-dimensional materials (TDLMs) but also imparts full Stokes polarization detection capability, thus offering a paradigm shift towards multidimensional light field sensing. This review systematically elucidates the working principle and device architecture of TDLMs. Subsequently, it reviews recent research advancements in this field, delving into the unique advantages of metasurface design in terms of light localization and interfacial heat transfer optimization. Furthermore, it summarizes the cutting-edge applications of TDLMs in wideband communication, flexible sensing, and multidimensional photodetection. Finally, it analyzes the major challenges confronting TDLMs and provides an outlook on their future development prospects.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11945977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060459","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热探测器具有宽带光谱响应和环境工作温度能力,是超越传统光子探测器固有局限的关键技术途径。传统热敏材料(如氧化钒和非晶硅)的热特性和响应性能之间存在着根本性的权衡,极大地阻碍了器件灵敏度和响应速度的同步提高。最近,低维材料以其原子级的薄厚度实现了超低热容和可调热电特性,成为解决这些瓶颈问题的一个前景广阔的视角。将低维材料与超表面集成,可以利用亚波长周期性配置和局部电磁场增强。这不仅克服了基于低维材料的热探测器(TDLMs)光吸收率低的限制,还赋予了完整的斯托克斯偏振探测能力,从而实现了多维光场传感的范式转变。本综述系统地阐明了 TDLM 的工作原理和器件结构。随后,它回顾了该领域的最新研究进展,深入探讨了元表面设计在光定位和界面传热优化方面的独特优势。此外,报告还总结了 TDLM 在宽带通信、柔性传感和多维光探测方面的前沿应用。最后,报告分析了 TDLM 面临的主要挑战,并对其未来发展前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging Thermal Detectors Based on Low-Dimensional Materials: Strategies and Progress.

Thermal detectors, owing to their broadband spectral response and ambient operating temperature capabilities, represent a key technological avenue for surpassing the inherent limitations of traditional photon detectors. A fundamental trade-off exists between the thermal properties and the response performance of conventional thermosensitive materials (e.g., vanadium oxide and amorphous silicon), significantly hindering the simultaneous enhancement of device sensitivity and response speed. Recently, low-dimensional materials, with their atomically thin thickness leading to ultralow thermal capacitance and tunable thermoelectric properties, have emerged as a promising perspective for addressing these bottlenecks. Integrating low-dimensional materials with metasurfaces enables the utilization of subwavelength periodic configurations and localized electromagnetic field enhancements. This not only overcomes the limitation of low light absorption efficiency in thermal detectors based on low-dimensional materials (TDLMs) but also imparts full Stokes polarization detection capability, thus offering a paradigm shift towards multidimensional light field sensing. This review systematically elucidates the working principle and device architecture of TDLMs. Subsequently, it reviews recent research advancements in this field, delving into the unique advantages of metasurface design in terms of light localization and interfacial heat transfer optimization. Furthermore, it summarizes the cutting-edge applications of TDLMs in wideband communication, flexible sensing, and multidimensional photodetection. Finally, it analyzes the major challenges confronting TDLMs and provides an outlook on their future development prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信