IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-16 DOI:10.3390/nano15060450
Tianxin Chen, Yue Wang, Jing Li, Liang Zhao, Xingyang Zhang, Jian He
{"title":"Development and Performance Study of Continuous Oil-Water Separation Device Based on Superhydrophobic/Oleophilic Mesh.","authors":"Tianxin Chen, Yue Wang, Jing Li, Liang Zhao, Xingyang Zhang, Jian He","doi":"10.3390/nano15060450","DOIUrl":null,"url":null,"abstract":"<p><p>Oil-water separation is an important method for treating oily wastewater and recovering oil resources. Based on the different affinities of superhydrophobic surfaces to water and oil, long-term oil-water separation devices with low-energy and high efficiency can be developed through the optimization of structure and process parameters. Superhydrophobic coatings were prepared on stainless-steel mesh surfaces using a spray method to construct single-channel oil-water separation equipment with superhydrophobic/oleophilic meshes, and the effects of structural and process parameters on separation efficiency were systematically investigated. Additionally, a multi-channel oil-water separation device was designed and fabricated to evaluate the feasibility and stability of long-term continuous operations. The optimized single V-shaped channel should be horizontally placed and made from 150-mesh stainless-steel mesh folded at an angle of 38.9°. For the oil-water mixtures containing 20 wt.% oil, the oil-water separation efficiencies for single and two-stage separation were 92.79% and 98.96%, respectively. After 36 h of continuous operation, the multi-channel separation device achieved single-stage and two-stage separation efficiencies of 94.60% and 98.76%, respectively. The maximum processing capacity of the multi-channel device reached 168 L/h. The modified stainless mesh can remain stable with a contact angle (CA) higher than 150° to water for 34 days. The average residence time and contact area during the oil-water separation process significantly affect separation efficiency. By optimizing oil-water separation structures and process parameters, and using a superhydrophobic spray modification method, separation efficiency can be improved while avoiding the generation of secondary pollutants.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946090/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060450","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

油水分离是处理含油废水和回收石油资源的重要方法。根据超疏水表面对水和油的不同亲和性,通过优化结构和工艺参数,可以开发出低能耗、高效率的长效油水分离装置。采用喷涂法在不锈钢网表面制备了超疏水涂层,构建了具有超疏水/亲油网孔的单通道油水分离设备,并系统研究了结构和工艺参数对分离效率的影响。此外,还设计并制造了多通道油水分离设备,以评估长期连续运行的可行性和稳定性。优化后的单 V 形通道应水平放置,由 150 目不锈钢网制成,折角为 38.9°。对于含油量为 20 wt.% 的油水混合物,单级和两级分离的油水分离效率分别为 92.79% 和 98.96%。连续运行 36 小时后,多通道分离装置的单级和两级分离效率分别达到 94.60% 和 98.76%。多通道装置的最大处理能力达到 168 L/h。改性不锈钢网与水的接触角(CA)大于 150°,可保持稳定 34 天。油水分离过程中的平均停留时间和接触面积对分离效率有很大影响。通过优化油水分离结构和工艺参数,并采用超疏水喷雾改性方法,可以提高分离效率,同时避免产生二次污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Performance Study of Continuous Oil-Water Separation Device Based on Superhydrophobic/Oleophilic Mesh.

Oil-water separation is an important method for treating oily wastewater and recovering oil resources. Based on the different affinities of superhydrophobic surfaces to water and oil, long-term oil-water separation devices with low-energy and high efficiency can be developed through the optimization of structure and process parameters. Superhydrophobic coatings were prepared on stainless-steel mesh surfaces using a spray method to construct single-channel oil-water separation equipment with superhydrophobic/oleophilic meshes, and the effects of structural and process parameters on separation efficiency were systematically investigated. Additionally, a multi-channel oil-water separation device was designed and fabricated to evaluate the feasibility and stability of long-term continuous operations. The optimized single V-shaped channel should be horizontally placed and made from 150-mesh stainless-steel mesh folded at an angle of 38.9°. For the oil-water mixtures containing 20 wt.% oil, the oil-water separation efficiencies for single and two-stage separation were 92.79% and 98.96%, respectively. After 36 h of continuous operation, the multi-channel separation device achieved single-stage and two-stage separation efficiencies of 94.60% and 98.76%, respectively. The maximum processing capacity of the multi-channel device reached 168 L/h. The modified stainless mesh can remain stable with a contact angle (CA) higher than 150° to water for 34 days. The average residence time and contact area during the oil-water separation process significantly affect separation efficiency. By optimizing oil-water separation structures and process parameters, and using a superhydrophobic spray modification method, separation efficiency can be improved while avoiding the generation of secondary pollutants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信