纳米材料在疾病检测和治疗微流控装置中的应用。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-03-12 DOI:10.3390/nano15060434
Zhibiao Tian, Yatian Fu, Zhiyong Dang, Tao Guo, Wenjuan Li, Jing Zhang
{"title":"纳米材料在疾病检测和治疗微流控装置中的应用。","authors":"Zhibiao Tian, Yatian Fu, Zhiyong Dang, Tao Guo, Wenjuan Li, Jing Zhang","doi":"10.3390/nano15060434","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic technology has gained widespread application in the field of biomedical research due to its exceptional sensitivity and high specificity. Particularly when combined with nanomaterials, the synergy between the two has significantly advanced fields such as precision medicine, drug delivery, disease detection, and treatment. This article aims to provide an overview of the latest research achievements of microfluidic nanomaterials in disease detection and treatment. It delves into the applications of microfluidic nanomaterials in detecting blood parameters, cardiovascular disease markers, neurological disease markers, and tumor markers. Special emphasis is placed on their roles in disease treatment, including models such as blood vessels, the blood-brain barrier, lung chips, and tumors. The development of microfluidic nanomaterials in emerging medical technologies, particularly in skin interactive devices and medical imaging, is also introduced. Additionally, the challenges and future prospects of microfluidic nanomaterials in current clinical applications are discussed. In summary, microfluidic nanomaterials play an indispensable role in disease detection and treatment. With the continuous advancement of technology, their applications in the medical field will become even more profound and extensive.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946687/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing Nanomaterials in Microfluidic Devices for Disease Detection and Treatment.\",\"authors\":\"Zhibiao Tian, Yatian Fu, Zhiyong Dang, Tao Guo, Wenjuan Li, Jing Zhang\",\"doi\":\"10.3390/nano15060434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidic technology has gained widespread application in the field of biomedical research due to its exceptional sensitivity and high specificity. Particularly when combined with nanomaterials, the synergy between the two has significantly advanced fields such as precision medicine, drug delivery, disease detection, and treatment. This article aims to provide an overview of the latest research achievements of microfluidic nanomaterials in disease detection and treatment. It delves into the applications of microfluidic nanomaterials in detecting blood parameters, cardiovascular disease markers, neurological disease markers, and tumor markers. Special emphasis is placed on their roles in disease treatment, including models such as blood vessels, the blood-brain barrier, lung chips, and tumors. The development of microfluidic nanomaterials in emerging medical technologies, particularly in skin interactive devices and medical imaging, is also introduced. Additionally, the challenges and future prospects of microfluidic nanomaterials in current clinical applications are discussed. In summary, microfluidic nanomaterials play an indispensable role in disease detection and treatment. With the continuous advancement of technology, their applications in the medical field will become even more profound and extensive.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11946687/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15060434\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15060434","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微流控技术以其独特的灵敏度和高特异性在生物医学研究领域得到了广泛的应用。特别是当与纳米材料结合时,两者之间的协同作用将显著推进精准医疗、药物输送、疾病检测和治疗等领域。本文综述了微流控纳米材料在疾病检测和治疗方面的最新研究成果。它深入研究了微流控纳米材料在检测血液参数、心血管疾病标志物、神经疾病标志物和肿瘤标志物方面的应用。特别强调的是它们在疾病治疗中的作用,包括血管、血脑屏障、肺芯片和肿瘤等模型。还介绍了微流控纳米材料在新兴医疗技术中的发展,特别是在皮肤交互设备和医学成像方面。此外,还讨论了微流控纳米材料在当前临床应用中的挑战和未来前景。综上所述,微流控纳米材料在疾病检测和治疗中发挥着不可或缺的作用。随着技术的不断进步,它们在医疗领域的应用将更加深入和广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Nanomaterials in Microfluidic Devices for Disease Detection and Treatment.

Microfluidic technology has gained widespread application in the field of biomedical research due to its exceptional sensitivity and high specificity. Particularly when combined with nanomaterials, the synergy between the two has significantly advanced fields such as precision medicine, drug delivery, disease detection, and treatment. This article aims to provide an overview of the latest research achievements of microfluidic nanomaterials in disease detection and treatment. It delves into the applications of microfluidic nanomaterials in detecting blood parameters, cardiovascular disease markers, neurological disease markers, and tumor markers. Special emphasis is placed on their roles in disease treatment, including models such as blood vessels, the blood-brain barrier, lung chips, and tumors. The development of microfluidic nanomaterials in emerging medical technologies, particularly in skin interactive devices and medical imaging, is also introduced. Additionally, the challenges and future prospects of microfluidic nanomaterials in current clinical applications are discussed. In summary, microfluidic nanomaterials play an indispensable role in disease detection and treatment. With the continuous advancement of technology, their applications in the medical field will become even more profound and extensive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信