激子绝缘体Ta2NiSe5中超快载流子动力学的压力依赖性。

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Vikas Arora, D V S Muthu, Arijit Sinha, Luminita Harnagea, U V Waghmare, A K Sood
{"title":"激子绝缘体Ta2NiSe5中超快载流子动力学的压力依赖性。","authors":"Vikas Arora, D V S Muthu, Arijit Sinha, Luminita Harnagea, U V Waghmare, A K Sood","doi":"10.1088/1361-648X/adc64b","DOIUrl":null,"url":null,"abstract":"<p><p>An excitonic insulator (EI) phase is a consequence of collective many-body effects where an optical band gap is formed by the condensation of electron-hole pairs or excitons. We report pressure-dependent optical pump-optical probe spectroscopy of EI Ta<sub>2</sub>NiSe<sub>5</sub>up to 5 GPa. The differential reflectivity as a function of delay time between the pump and probe pulses shows two relaxation processes with their time constants and amplitudes revealing changes at PC1∼1 GPa (transition from EI phase to semiconductor) and PC2∼3 GPa (from semiconductor to semimetallic phase). The pressure dependence of the fast relaxation time and corresponding amplitude in the EI phase are captured by the Rothwarf-Taylor model, bringing out the decrease of the bandgap under pressure, with a pressure coefficient of 65 meV GPa<sup>-1</sup>, closely agreeing with our first principle calculations. The decrease of the slow relaxation time in the EI phase with pressure is due to enhanced electron-phonon coupling as confirmed by our calculations. The fluence dependence of the relaxation parameters at different pressures corroborates the semi-metallic nature above PC2. Our experiments combined with first principle calculations thus provide additional insights into different high-pressure phases of Ta<sub>2</sub>NiSe<sub>5</sub>.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure dependence of ultrafast carrier dynamics in excitonic insulator Ta<sub>2</sub>NiSe<sub>5</sub>.\",\"authors\":\"Vikas Arora, D V S Muthu, Arijit Sinha, Luminita Harnagea, U V Waghmare, A K Sood\",\"doi\":\"10.1088/1361-648X/adc64b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An excitonic insulator (EI) phase is a consequence of collective many-body effects where an optical band gap is formed by the condensation of electron-hole pairs or excitons. We report pressure-dependent optical pump-optical probe spectroscopy of EI Ta<sub>2</sub>NiSe<sub>5</sub>up to 5 GPa. The differential reflectivity as a function of delay time between the pump and probe pulses shows two relaxation processes with their time constants and amplitudes revealing changes at PC1∼1 GPa (transition from EI phase to semiconductor) and PC2∼3 GPa (from semiconductor to semimetallic phase). The pressure dependence of the fast relaxation time and corresponding amplitude in the EI phase are captured by the Rothwarf-Taylor model, bringing out the decrease of the bandgap under pressure, with a pressure coefficient of 65 meV GPa<sup>-1</sup>, closely agreeing with our first principle calculations. The decrease of the slow relaxation time in the EI phase with pressure is due to enhanced electron-phonon coupling as confirmed by our calculations. The fluence dependence of the relaxation parameters at different pressures corroborates the semi-metallic nature above PC2. Our experiments combined with first principle calculations thus provide additional insights into different high-pressure phases of Ta<sub>2</sub>NiSe<sub>5</sub>.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/adc64b\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adc64b","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

激子绝缘体(EI)相位是集体多体效应的结果,其中光学带隙是由电子-空穴对或激子的凝聚形成的。我们报道了EI Ta2NiSe5高达5 GPa的压力相关光泵浦-光探针光谱。差反射率作为泵浦和探针脉冲之间延迟时间的函数显示了两个 ;弛豫过程,其时间常数和振幅显示了PC1 ~ 1 GPa(从EI相转变为半导体)和PC2 ~ 3 GPa(从半导体到半金属相)的变化。Rothwarf-Taylor模型捕获了EI相快速弛豫时间和相应振幅的压力依赖性,得到了压力下带隙的减小,压力系数为65 meV/GPa,与我们的第一原理计算结果非常吻合。我们的计算证实,EI相位的慢弛豫时间随压力的减小是由于电子-声子耦合的增强。弛豫参数在不同压力下的影响关系证实了PC2以上的半金属性质。我们的实验与第一性原理计算相结合,从而为Ta2NiSe5的不同高压相提供了额外的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure dependence of ultrafast carrier dynamics in excitonic insulator Ta2NiSe5.

An excitonic insulator (EI) phase is a consequence of collective many-body effects where an optical band gap is formed by the condensation of electron-hole pairs or excitons. We report pressure-dependent optical pump-optical probe spectroscopy of EI Ta2NiSe5up to 5 GPa. The differential reflectivity as a function of delay time between the pump and probe pulses shows two relaxation processes with their time constants and amplitudes revealing changes at PC1∼1 GPa (transition from EI phase to semiconductor) and PC2∼3 GPa (from semiconductor to semimetallic phase). The pressure dependence of the fast relaxation time and corresponding amplitude in the EI phase are captured by the Rothwarf-Taylor model, bringing out the decrease of the bandgap under pressure, with a pressure coefficient of 65 meV GPa-1, closely agreeing with our first principle calculations. The decrease of the slow relaxation time in the EI phase with pressure is due to enhanced electron-phonon coupling as confirmed by our calculations. The fluence dependence of the relaxation parameters at different pressures corroborates the semi-metallic nature above PC2. Our experiments combined with first principle calculations thus provide additional insights into different high-pressure phases of Ta2NiSe5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信