通过有机金属方法制备胶体各向同性氧化锌纳米晶体的新见解。

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anna Wojewódzka, Małgorzata Wolska-Pietkiewicz, Roman H Szczepanowski, Maria Jędrzejewska, Karolina Zelga, Janusz Lewiński
{"title":"通过有机金属方法制备胶体各向同性氧化锌纳米晶体的新见解。","authors":"Anna Wojewódzka, Małgorzata Wolska-Pietkiewicz, Roman H Szczepanowski, Maria Jędrzejewska, Karolina Zelga, Janusz Lewiński","doi":"10.1039/d4na00933a","DOIUrl":null,"url":null,"abstract":"<p><p>The study of factors controlling nanocrystal (NC) growth is essential for uncovering and understanding nanomaterial formation, which typically involves a complex sequence of precursor reactions, nucleation, and growth processes. Herein, as part of the continuous development of the self-supporting organometallic approach for the preparation of quantum-sized colloidal zinc oxide (ZnO) NCs, we selected a series of [EtZn(X)]-type carboxylate precursors, where X = methoxyacetate, 2-(2-methoxyethoxy)acetate, or 2-[2-(2-methoxyethoxy)ethoxy]acetate, as model self-supporting systems with varying carboxylate tail lengths. The controlled exposure of a [EtZn(X)]-type precursor solution to air afforded colloidal ZnO NCs with a narrow unimodal size distribution and coated with strongly anchored X-type ligands. Employing optical spectroscopy techniques, we investigate how the growth dynamics of NCs depend on the length of the carboxylate tail. Moreover, leveraging analytical ultracentrifugation (AUC), we meticulously examined the behavior of NCs in solution under centrifugal forces to gain valuable insights into their stability and aggregation tendencies. This study not only enhances understanding of the underlying 'living growth' of organometallic-derived nanostructures that leads to the formation of thermodynamically stable and monodispersed ZnO NCs but also significantly contributes to the ongoing development of more effective methods for synthesizing colloidal ZnO NCs, thereby advancing the field of materials science.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938107/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new insight into the fabrication of colloidal isotropic ZnO nanocrystals by an organometallic approach.\",\"authors\":\"Anna Wojewódzka, Małgorzata Wolska-Pietkiewicz, Roman H Szczepanowski, Maria Jędrzejewska, Karolina Zelga, Janusz Lewiński\",\"doi\":\"10.1039/d4na00933a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of factors controlling nanocrystal (NC) growth is essential for uncovering and understanding nanomaterial formation, which typically involves a complex sequence of precursor reactions, nucleation, and growth processes. Herein, as part of the continuous development of the self-supporting organometallic approach for the preparation of quantum-sized colloidal zinc oxide (ZnO) NCs, we selected a series of [EtZn(X)]-type carboxylate precursors, where X = methoxyacetate, 2-(2-methoxyethoxy)acetate, or 2-[2-(2-methoxyethoxy)ethoxy]acetate, as model self-supporting systems with varying carboxylate tail lengths. The controlled exposure of a [EtZn(X)]-type precursor solution to air afforded colloidal ZnO NCs with a narrow unimodal size distribution and coated with strongly anchored X-type ligands. Employing optical spectroscopy techniques, we investigate how the growth dynamics of NCs depend on the length of the carboxylate tail. Moreover, leveraging analytical ultracentrifugation (AUC), we meticulously examined the behavior of NCs in solution under centrifugal forces to gain valuable insights into their stability and aggregation tendencies. This study not only enhances understanding of the underlying 'living growth' of organometallic-derived nanostructures that leads to the formation of thermodynamically stable and monodispersed ZnO NCs but also significantly contributes to the ongoing development of more effective methods for synthesizing colloidal ZnO NCs, thereby advancing the field of materials science.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938107/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4na00933a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00933a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究控制纳米晶体生长的因素对于揭示和理解纳米材料的形成至关重要,纳米材料的形成通常涉及一系列复杂的前驱体反应、成核和生长过程。在此,作为制备量子级胶体氧化锌(ZnO)纳米材料的自支撑有机金属方法的持续发展的一部分,我们选择了一系列[EtZn(X)]型羧酸盐前体,其中X =甲氧基乙酸酯,2-(2-甲氧基乙氧基)乙酸酯或2-[2-(2-甲氧基乙氧基)乙氧基]乙酸酯,作为具有不同羧酸盐尾长度的模型自支撑体系。[EtZn(X)]型前驱体溶液受控暴露于空气中,可获得具有窄单峰尺寸分布的胶体ZnO NCs,并被强锚定的X型配体包裹。利用光谱学技术,我们研究了碳纳米管的生长动力学如何依赖于羧酸盐尾部的长度。此外,利用分析超离心(AUC),我们仔细研究了NCs在离心力作用下在溶液中的行为,以获得对其稳定性和聚集倾向的有价值的见解。这项研究不仅提高了对有机金属衍生纳米结构的潜在“活生长”的理解,从而导致形成热力学稳定和单分散的ZnO纳米结构,而且还为合成胶体ZnO纳米结构的更有效方法的持续发展做出了重大贡献,从而推动了材料科学领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new insight into the fabrication of colloidal isotropic ZnO nanocrystals by an organometallic approach.

The study of factors controlling nanocrystal (NC) growth is essential for uncovering and understanding nanomaterial formation, which typically involves a complex sequence of precursor reactions, nucleation, and growth processes. Herein, as part of the continuous development of the self-supporting organometallic approach for the preparation of quantum-sized colloidal zinc oxide (ZnO) NCs, we selected a series of [EtZn(X)]-type carboxylate precursors, where X = methoxyacetate, 2-(2-methoxyethoxy)acetate, or 2-[2-(2-methoxyethoxy)ethoxy]acetate, as model self-supporting systems with varying carboxylate tail lengths. The controlled exposure of a [EtZn(X)]-type precursor solution to air afforded colloidal ZnO NCs with a narrow unimodal size distribution and coated with strongly anchored X-type ligands. Employing optical spectroscopy techniques, we investigate how the growth dynamics of NCs depend on the length of the carboxylate tail. Moreover, leveraging analytical ultracentrifugation (AUC), we meticulously examined the behavior of NCs in solution under centrifugal forces to gain valuable insights into their stability and aggregation tendencies. This study not only enhances understanding of the underlying 'living growth' of organometallic-derived nanostructures that leads to the formation of thermodynamically stable and monodispersed ZnO NCs but also significantly contributes to the ongoing development of more effective methods for synthesizing colloidal ZnO NCs, thereby advancing the field of materials science.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信