Kai Wang, Chenjian Fu, Xingxue Fu, Peng Qin, Xiaochun Hu, Xuanwen Zhang, Zhao Deng, Tianze Yan, Nan Jiang, Yanfeng Li, Jun Fu, Yiwen Deng, Yanbiao Zhou, Gui Xiao, Zuhua He, Yuanzhu Yang
{"title":"利用Pigm基因增强温敏雄性不育系龙科638s及其衍生杂交种的抗病性","authors":"Kai Wang, Chenjian Fu, Xingxue Fu, Peng Qin, Xiaochun Hu, Xuanwen Zhang, Zhao Deng, Tianze Yan, Nan Jiang, Yanfeng Li, Jun Fu, Yiwen Deng, Yanbiao Zhou, Gui Xiao, Zuhua He, Yuanzhu Yang","doi":"10.1007/s11032-025-01555-3","DOIUrl":null,"url":null,"abstract":"<p><p>Rice blast, caused by the fungal pathogen <i>Magnaporthe oryzae</i>, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (<i>R</i>) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The <i>R</i> gene <i>Pigm</i>, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of <i>Pigm</i> into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous <i>Pi2</i> gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01555-3.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"35"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing the blast resistance of an elite thermo-sensitive genic male sterile line (TGMS) Longke638S and its derived hybrid varieties by incorporating <i>Pigm</i> gene.\",\"authors\":\"Kai Wang, Chenjian Fu, Xingxue Fu, Peng Qin, Xiaochun Hu, Xuanwen Zhang, Zhao Deng, Tianze Yan, Nan Jiang, Yanfeng Li, Jun Fu, Yiwen Deng, Yanbiao Zhou, Gui Xiao, Zuhua He, Yuanzhu Yang\",\"doi\":\"10.1007/s11032-025-01555-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rice blast, caused by the fungal pathogen <i>Magnaporthe oryzae</i>, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (<i>R</i>) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The <i>R</i> gene <i>Pigm</i>, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of <i>Pigm</i> into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous <i>Pi2</i> gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01555-3.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 4\",\"pages\":\"35\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01555-3\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01555-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Enhancing the blast resistance of an elite thermo-sensitive genic male sterile line (TGMS) Longke638S and its derived hybrid varieties by incorporating Pigm gene.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. The utilization of host resistance (R) genes in rice breeding program is considered as the most economical, effective, environment-friendly strategy for rice blast control. The R gene Pigm, shows high, broad-spectrum and durable resistance to rice blast. Here, we report the successful integration of Pigm into Longke638S (LK638S), an elite thermo-sensitive genic male sterile (TGMS) line in hybrid rice production in China. The integration significantly enhanced the blast resistance of LK638S and the derived hybrid varieties demonstrated exceptional performance in both yield and blast resistance. The improved line Longzhen36S (LZ36S), which recovered 91.84% of the recurrent parent genome. LZ36S exhibited a high blast resistance frequency of 96.4% against 28 blast isolates. Furthermore, the LZ36S-derived hybrids exhibited enhanced resistance to both seedling and panicle blast compared to LK638S-derived hybrids carrying the heterozygous Pi2 gene, all without yield penalty. A total of ninety LK638S derived hybrid varieties have been state or provincial approved and certified with an annual promoting area exceed 964.0 thousand hectares. The LZ36S-derived hybrids can serve as improved versions with enhanced blast resistance, making them viable replacements for LK638S-derived hybrids in commercial production. Moreover, sixteen LZ36S-derived hybrid varieties, all possessing moderate (MR) or high (R) level blast resistance, along with excellent yield and grain quality, have been state or provincial approved and certificated. These LZ36S-derived hybrids show great potential for rapid commercialization, with promoting area of ~ 200 thousand hectares by 2023.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01555-3.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.