面包小麦(Triticum aestivum L.)基因型对全蚀病反应与农艺性状和分子标记的关联分析及理想基因型选择

IF 2.6 3区 农林科学 Q1 AGRONOMY
Molecular Breeding Pub Date : 2025-03-26 eCollection Date: 2025-04-01 DOI:10.1007/s11032-025-01554-4
Mozhgan Gholizadeh Vazvani, Hossein Dashti, Roohallah Saberi Riseh, Evelin Loit
{"title":"面包小麦(Triticum aestivum L.)基因型对全蚀病反应与农艺性状和分子标记的关联分析及理想基因型选择","authors":"Mozhgan Gholizadeh Vazvani, Hossein Dashti, Roohallah Saberi Riseh, Evelin Loit","doi":"10.1007/s11032-025-01554-4","DOIUrl":null,"url":null,"abstract":"<p><p>Take-all disease, caused by the fungal pathogen <i>Gaeumannomyces tritici</i>, severely impacts the growth and grain yield of wheat. Identifying loci associated with disease resistance can be achieved through molecular methods, along with data on morphological traits and disease severity. This study analyzed 100 bread wheat genotypes using molecular markers (SSR, IRAP technique, and translocation wheat-rye) and agronomical traits to pinpoint loci related to resistance to take-all disease. In this research, we propose a new approach using TOPSIS method for identifying ideal genotypes with resistance to take-all disease and the best in point of other agronomic traits. Genotypes were grouped based on agronomical traits (yield and its components) observed in the field, as well as root weight characteristics, root lignin content, and disease severity. These groupings effectively distinguished between resistant and sensitive genotypes. Stepwise regression techniques unveiled significant loci linked to disease resistance and agronomical traits. The presence of common loci suggests a potential pleiotropic nature of disease resistance. Molecular analysis exposed interactive loci contributing to trait variations and disease resistance, indicating gene-by-gene interactions. Using the IRAP technique, a locus from the LTR retrotransposon marker (LTR14) showed a strong correlation with take-all disease resistance and agronomic traits. This marker can serve as an informative and promising candidate for marker-assisted selection in wheat breeding programs. The TOPSIS method assisted in identifying genotypes showing high yield and resistance to take-all disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01554-4.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"45 4","pages":"36"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937458/pdf/","citationCount":"0","resultStr":"{\"title\":\"Association analysis of response to take-all disease with agronomic traits and molecular markers and selection ideal genotypes in bread wheat (<i>Triticum aestivum</i> L.) genotypes.\",\"authors\":\"Mozhgan Gholizadeh Vazvani, Hossein Dashti, Roohallah Saberi Riseh, Evelin Loit\",\"doi\":\"10.1007/s11032-025-01554-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Take-all disease, caused by the fungal pathogen <i>Gaeumannomyces tritici</i>, severely impacts the growth and grain yield of wheat. Identifying loci associated with disease resistance can be achieved through molecular methods, along with data on morphological traits and disease severity. This study analyzed 100 bread wheat genotypes using molecular markers (SSR, IRAP technique, and translocation wheat-rye) and agronomical traits to pinpoint loci related to resistance to take-all disease. In this research, we propose a new approach using TOPSIS method for identifying ideal genotypes with resistance to take-all disease and the best in point of other agronomic traits. Genotypes were grouped based on agronomical traits (yield and its components) observed in the field, as well as root weight characteristics, root lignin content, and disease severity. These groupings effectively distinguished between resistant and sensitive genotypes. Stepwise regression techniques unveiled significant loci linked to disease resistance and agronomical traits. The presence of common loci suggests a potential pleiotropic nature of disease resistance. Molecular analysis exposed interactive loci contributing to trait variations and disease resistance, indicating gene-by-gene interactions. Using the IRAP technique, a locus from the LTR retrotransposon marker (LTR14) showed a strong correlation with take-all disease resistance and agronomic traits. This marker can serve as an informative and promising candidate for marker-assisted selection in wheat breeding programs. The TOPSIS method assisted in identifying genotypes showing high yield and resistance to take-all disease.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-025-01554-4.</p>\",\"PeriodicalId\":18769,\"journal\":{\"name\":\"Molecular Breeding\",\"volume\":\"45 4\",\"pages\":\"36\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937458/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Breeding\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11032-025-01554-4\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-025-01554-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

小麦全蚀病是由小麦gaeumanomyces tritici引起的一种真菌病,严重影响小麦的生长和产量。鉴定与抗病相关的基因座可以通过分子方法以及形态特征和疾病严重程度的数据来实现。本研究利用分子标记(SSR、IRAP技术和小麦-黑麦易位技术)和农艺性状分析了100个面包小麦基因型,以确定抗全蚀病的相关位点。在本研究中,我们提出了一种利用TOPSIS方法鉴定抗全蚀病和其他农艺性状最佳点的理想基因型的新方法。根据田间观察到的农艺性状(产量及其组成)、根重特性、根木质素含量和病害严重程度对基因型进行分组。这些分组有效地区分了耐药基因型和敏感基因型。逐步回归技术揭示了与抗病和农艺性状相关的显著位点。共同基因座的存在表明抗病的潜在多效性。分子分析揭示了促进性状变异和抗病的相互作用位点,表明基因间的相互作用。利用IRAP技术,LTR反转录转座子标记(LTR14)的一个位点显示出与全蚀病抗性和农艺性状的强相关性。该标记可作为小麦育种中有价值的标记辅助选择候选物。TOPSIS方法有助于鉴定高产和抗全蚀性疾病的基因型。补充资料:在线版本包含补充资料,下载地址:10.1007/s11032-025-01554-4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Association analysis of response to take-all disease with agronomic traits and molecular markers and selection ideal genotypes in bread wheat (Triticum aestivum L.) genotypes.

Take-all disease, caused by the fungal pathogen Gaeumannomyces tritici, severely impacts the growth and grain yield of wheat. Identifying loci associated with disease resistance can be achieved through molecular methods, along with data on morphological traits and disease severity. This study analyzed 100 bread wheat genotypes using molecular markers (SSR, IRAP technique, and translocation wheat-rye) and agronomical traits to pinpoint loci related to resistance to take-all disease. In this research, we propose a new approach using TOPSIS method for identifying ideal genotypes with resistance to take-all disease and the best in point of other agronomic traits. Genotypes were grouped based on agronomical traits (yield and its components) observed in the field, as well as root weight characteristics, root lignin content, and disease severity. These groupings effectively distinguished between resistant and sensitive genotypes. Stepwise regression techniques unveiled significant loci linked to disease resistance and agronomical traits. The presence of common loci suggests a potential pleiotropic nature of disease resistance. Molecular analysis exposed interactive loci contributing to trait variations and disease resistance, indicating gene-by-gene interactions. Using the IRAP technique, a locus from the LTR retrotransposon marker (LTR14) showed a strong correlation with take-all disease resistance and agronomic traits. This marker can serve as an informative and promising candidate for marker-assisted selection in wheat breeding programs. The TOPSIS method assisted in identifying genotypes showing high yield and resistance to take-all disease.

Supplementary information: The online version contains supplementary material available at 10.1007/s11032-025-01554-4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Breeding
Molecular Breeding 农林科学-农艺学
CiteScore
5.60
自引率
6.50%
发文量
67
审稿时长
1.5 months
期刊介绍: Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer. All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others. Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards. Molecular Breeding core areas: Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信