针对健康成人 SARS-CoV-2 Beta、Delta 和 Omicron BA.1 VoCs 的同源与异源免疫方案的免疫原性的元分析。

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jo-Lewis Banga Ndzouboukou, Abdul A Kamara, Nadeem Ullah, Qing Lei, Xiong-Lin Fan
{"title":"针对健康成人 SARS-CoV-2 Beta、Delta 和 Omicron BA.1 VoCs 的同源与异源免疫方案的免疫原性的元分析。","authors":"Jo-Lewis Banga Ndzouboukou, Abdul A Kamara, Nadeem Ullah, Qing Lei, Xiong-Lin Fan","doi":"10.4014/jmb.2411.11059","DOIUrl":null,"url":null,"abstract":"<p><p>Since the outbreak of the COVID-19 pandemic, SARS-CoV-2 has not stopped evolving, leading to the emergence of variants of concern (VoCs) involved in significant immune escape. Here, we compared the immunogenicity of different prime-boost vaccination regimens against SARS-CoV-2 wildtype (WT) and its Beta, Delta, and Omicron BA.1 VoCs. We used 5 databases to retrieve publications and random-effect models to estimate pooled neutralization titers. We included 11 randomized controlled trials (RCTs) and 16 non-RCTs, 10 prime-boost vaccination regimens, and 4598 subjects. We found neutralization activity against SARS-CoV-2 decreased with virus evolution. The heterologous immunization was more effective. The increase in neutralization titers against SARS-CoV-2 WT and Beta, Delta, and Omicron BA.1 VoCs after heterologous immunization was 1.41(95%CI:0.82-2.01), 0.90(95%CI:0.39-1.41), 1.23 (95%CI: 0.81-1.65), and 1.32 (95%CI: 0.99-1.65), respectively. Furthermore, the booster dose of viral vector vaccine did not show a higher increase in neutralization titers against SARS-CoV-2 WT(MD=0.48; 95%CI:-1.12-1.09), Beta (MD=0.20; 95%CI:-0.26-0.67), Delta (MD=0.35; 95%CI:-0.09-0.79), and Omicron BA.1 (MD=0.38; 95%CI:-0.14-0.89) VoCs. The combination of inactivated-recombinant protein vaccines showed a higher increase in neutralization titers (Beta: MD=1.88 and Delta: MD=1.70) than other combinations of vaccines. However, only a combination of mRNA-viral vector vaccines showed a higher increase in neutralization titers (MD:1.52; 95%CI:0.34-2.70) against Omicron BA.1 VoC. Interestingly, the viral vector-mRNA immunization regimen appears better compared to mRNA-viral vector regimen, especially against Beta and Delta VoCs. Overall, the type of combination followed by the order of administration of COVID-19 vaccines could be a potential vaccine strategy against the occurrence of SARS-CoV-2 variants.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"35 ","pages":"e2411059"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Meta-Analysis on the Immunogenicity of Homologous versus Heterologous Immunization Regimens against SARS-CoV-2 Beta, Delta, and Omicron BA.1 VoCs in Healthy Adults.\",\"authors\":\"Jo-Lewis Banga Ndzouboukou, Abdul A Kamara, Nadeem Ullah, Qing Lei, Xiong-Lin Fan\",\"doi\":\"10.4014/jmb.2411.11059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since the outbreak of the COVID-19 pandemic, SARS-CoV-2 has not stopped evolving, leading to the emergence of variants of concern (VoCs) involved in significant immune escape. Here, we compared the immunogenicity of different prime-boost vaccination regimens against SARS-CoV-2 wildtype (WT) and its Beta, Delta, and Omicron BA.1 VoCs. We used 5 databases to retrieve publications and random-effect models to estimate pooled neutralization titers. We included 11 randomized controlled trials (RCTs) and 16 non-RCTs, 10 prime-boost vaccination regimens, and 4598 subjects. We found neutralization activity against SARS-CoV-2 decreased with virus evolution. The heterologous immunization was more effective. The increase in neutralization titers against SARS-CoV-2 WT and Beta, Delta, and Omicron BA.1 VoCs after heterologous immunization was 1.41(95%CI:0.82-2.01), 0.90(95%CI:0.39-1.41), 1.23 (95%CI: 0.81-1.65), and 1.32 (95%CI: 0.99-1.65), respectively. Furthermore, the booster dose of viral vector vaccine did not show a higher increase in neutralization titers against SARS-CoV-2 WT(MD=0.48; 95%CI:-1.12-1.09), Beta (MD=0.20; 95%CI:-0.26-0.67), Delta (MD=0.35; 95%CI:-0.09-0.79), and Omicron BA.1 (MD=0.38; 95%CI:-0.14-0.89) VoCs. The combination of inactivated-recombinant protein vaccines showed a higher increase in neutralization titers (Beta: MD=1.88 and Delta: MD=1.70) than other combinations of vaccines. However, only a combination of mRNA-viral vector vaccines showed a higher increase in neutralization titers (MD:1.52; 95%CI:0.34-2.70) against Omicron BA.1 VoC. Interestingly, the viral vector-mRNA immunization regimen appears better compared to mRNA-viral vector regimen, especially against Beta and Delta VoCs. Overall, the type of combination followed by the order of administration of COVID-19 vaccines could be a potential vaccine strategy against the occurrence of SARS-CoV-2 variants.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":\"35 \",\"pages\":\"e2411059\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2411.11059\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2411.11059","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Meta-Analysis on the Immunogenicity of Homologous versus Heterologous Immunization Regimens against SARS-CoV-2 Beta, Delta, and Omicron BA.1 VoCs in Healthy Adults.

Since the outbreak of the COVID-19 pandemic, SARS-CoV-2 has not stopped evolving, leading to the emergence of variants of concern (VoCs) involved in significant immune escape. Here, we compared the immunogenicity of different prime-boost vaccination regimens against SARS-CoV-2 wildtype (WT) and its Beta, Delta, and Omicron BA.1 VoCs. We used 5 databases to retrieve publications and random-effect models to estimate pooled neutralization titers. We included 11 randomized controlled trials (RCTs) and 16 non-RCTs, 10 prime-boost vaccination regimens, and 4598 subjects. We found neutralization activity against SARS-CoV-2 decreased with virus evolution. The heterologous immunization was more effective. The increase in neutralization titers against SARS-CoV-2 WT and Beta, Delta, and Omicron BA.1 VoCs after heterologous immunization was 1.41(95%CI:0.82-2.01), 0.90(95%CI:0.39-1.41), 1.23 (95%CI: 0.81-1.65), and 1.32 (95%CI: 0.99-1.65), respectively. Furthermore, the booster dose of viral vector vaccine did not show a higher increase in neutralization titers against SARS-CoV-2 WT(MD=0.48; 95%CI:-1.12-1.09), Beta (MD=0.20; 95%CI:-0.26-0.67), Delta (MD=0.35; 95%CI:-0.09-0.79), and Omicron BA.1 (MD=0.38; 95%CI:-0.14-0.89) VoCs. The combination of inactivated-recombinant protein vaccines showed a higher increase in neutralization titers (Beta: MD=1.88 and Delta: MD=1.70) than other combinations of vaccines. However, only a combination of mRNA-viral vector vaccines showed a higher increase in neutralization titers (MD:1.52; 95%CI:0.34-2.70) against Omicron BA.1 VoC. Interestingly, the viral vector-mRNA immunization regimen appears better compared to mRNA-viral vector regimen, especially against Beta and Delta VoCs. Overall, the type of combination followed by the order of administration of COVID-19 vaccines could be a potential vaccine strategy against the occurrence of SARS-CoV-2 variants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信