使用神经网络模型预测最终修复颜色:基材亮度对陶瓷阴影、半透明和厚度的影响。

IF 3.2 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Muneera Almedaires, Alejandro Delgado, Nader Abdulhameed, Patricia Pereira, Mateus Garcia Rocha, Dayane Oliveira
{"title":"使用神经网络模型预测最终修复颜色:基材亮度对陶瓷阴影、半透明和厚度的影响。","authors":"Muneera Almedaires, Alejandro Delgado, Nader Abdulhameed, Patricia Pereira, Mateus Garcia Rocha, Dayane Oliveira","doi":"10.1111/jerd.13469","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to assess the influence of background color, ceramic shade, translucency, and thickness on the color matching of lithium disilicate restorations and to use a neural network model to predict the optimal parameters for shade matching.</p><p><strong>Methods: </strong>A neural network model was applied to evaluate the effects of lithium disilicate ceramic shade (A1, A2, A3), translucency (HT, M, T, LT), and thickness (0.5, 1.0, 1.5 mm), as well as background color (black, white, enamel and dentin shades A1-D4) on color matching. Color measurements (L*, a*, b*) were obtained using a spectrophotometer (CM-700d, Konica Minolta) in SCI mode.</p><p><strong>Results: </strong>Background color had a significant influence on color matching (p < 0.001, R<sup>2</sup> = 0.740). The model explained 71.45% of the variance in final color values, with a mean absolute error (MAE) of 0.8578 units in the CIELab space. SHAP analysis identified initial L* value (42.32%), ceramic thickness (19.51%), and translucency (10.36%) as key predictors. Component-wise, L* had an R<sup>2</sup> of 0.7594, a* had the lowest R<sup>2</sup> (0.5993), and b* performed best (R<sup>2</sup> = 0.7848).</p><p><strong>Conclusion: </strong>Background color and ceramic thickness are the most critical factors in minimizing color discrepancies in ceramic restorations. The developed model demonstrates promising potential in predicting the color outcomes of ceramic restorations.</p><p><strong>Clinical significance: </strong>Neural networks offer promise as predictive tools for clinicians, aiding in selecting materials and fabrication parameters to achieve desired esthetic outcomes.</p>","PeriodicalId":15988,"journal":{"name":"Journal of Esthetic and Restorative Dentistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Final Restoration Color Using Neural Network Models: The Impact of Substrate Lightness Versus Ceramic Shade, Translucency and Thickness.\",\"authors\":\"Muneera Almedaires, Alejandro Delgado, Nader Abdulhameed, Patricia Pereira, Mateus Garcia Rocha, Dayane Oliveira\",\"doi\":\"10.1111/jerd.13469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to assess the influence of background color, ceramic shade, translucency, and thickness on the color matching of lithium disilicate restorations and to use a neural network model to predict the optimal parameters for shade matching.</p><p><strong>Methods: </strong>A neural network model was applied to evaluate the effects of lithium disilicate ceramic shade (A1, A2, A3), translucency (HT, M, T, LT), and thickness (0.5, 1.0, 1.5 mm), as well as background color (black, white, enamel and dentin shades A1-D4) on color matching. Color measurements (L*, a*, b*) were obtained using a spectrophotometer (CM-700d, Konica Minolta) in SCI mode.</p><p><strong>Results: </strong>Background color had a significant influence on color matching (p < 0.001, R<sup>2</sup> = 0.740). The model explained 71.45% of the variance in final color values, with a mean absolute error (MAE) of 0.8578 units in the CIELab space. SHAP analysis identified initial L* value (42.32%), ceramic thickness (19.51%), and translucency (10.36%) as key predictors. Component-wise, L* had an R<sup>2</sup> of 0.7594, a* had the lowest R<sup>2</sup> (0.5993), and b* performed best (R<sup>2</sup> = 0.7848).</p><p><strong>Conclusion: </strong>Background color and ceramic thickness are the most critical factors in minimizing color discrepancies in ceramic restorations. The developed model demonstrates promising potential in predicting the color outcomes of ceramic restorations.</p><p><strong>Clinical significance: </strong>Neural networks offer promise as predictive tools for clinicians, aiding in selecting materials and fabrication parameters to achieve desired esthetic outcomes.</p>\",\"PeriodicalId\":15988,\"journal\":{\"name\":\"Journal of Esthetic and Restorative Dentistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Esthetic and Restorative Dentistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jerd.13469\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Esthetic and Restorative Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jerd.13469","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估背景色、陶瓷色度、半透明度和厚度对二硅酸锂修复体颜色匹配的影响,并利用神经网络模型预测色度匹配的最佳参数。方法:采用神经网络模型评价二硅酸锂陶瓷色度(A1、A2、A3)、透明度(HT、M、T、LT)、厚度(0.5、1.0、1.5 mm)以及底色(黑色、白色、牙釉质和牙本质色度A1- d4)对颜色匹配的影响。在SCI模式下使用分光光度计(CM-700d,柯尼卡美能达)测量颜色(L*, a*, b*)。结果:背景颜色对颜色匹配有显著影响(p 2 = 0.740)。该模型解释了最终颜色值方差的71.45%,在CIELab空间中平均绝对误差(MAE)为0.8578单位。SHAP分析发现初始L*值(42.32%)、陶瓷厚度(19.51%)和透明度(10.36%)是主要预测因子。成分方面,L*的R2为0.7594,a*的R2最低(0.5993),b*的R2最好(0.7848)。结论:背景颜色和陶瓷厚度是减少陶瓷修复体颜色差异的最关键因素。所建立的模型在预测陶瓷修复体的颜色结果方面显示出良好的潜力。临床意义:神经网络为临床医生提供了预测工具,帮助选择材料和制造参数,以达到理想的美学效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Final Restoration Color Using Neural Network Models: The Impact of Substrate Lightness Versus Ceramic Shade, Translucency and Thickness.

Objectives: This study aimed to assess the influence of background color, ceramic shade, translucency, and thickness on the color matching of lithium disilicate restorations and to use a neural network model to predict the optimal parameters for shade matching.

Methods: A neural network model was applied to evaluate the effects of lithium disilicate ceramic shade (A1, A2, A3), translucency (HT, M, T, LT), and thickness (0.5, 1.0, 1.5 mm), as well as background color (black, white, enamel and dentin shades A1-D4) on color matching. Color measurements (L*, a*, b*) were obtained using a spectrophotometer (CM-700d, Konica Minolta) in SCI mode.

Results: Background color had a significant influence on color matching (p < 0.001, R2 = 0.740). The model explained 71.45% of the variance in final color values, with a mean absolute error (MAE) of 0.8578 units in the CIELab space. SHAP analysis identified initial L* value (42.32%), ceramic thickness (19.51%), and translucency (10.36%) as key predictors. Component-wise, L* had an R2 of 0.7594, a* had the lowest R2 (0.5993), and b* performed best (R2 = 0.7848).

Conclusion: Background color and ceramic thickness are the most critical factors in minimizing color discrepancies in ceramic restorations. The developed model demonstrates promising potential in predicting the color outcomes of ceramic restorations.

Clinical significance: Neural networks offer promise as predictive tools for clinicians, aiding in selecting materials and fabrication parameters to achieve desired esthetic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Esthetic and Restorative Dentistry
Journal of Esthetic and Restorative Dentistry 医学-牙科与口腔外科
CiteScore
6.30
自引率
6.20%
发文量
124
审稿时长
>12 weeks
期刊介绍: The Journal of Esthetic and Restorative Dentistry (JERD) is the longest standing peer-reviewed journal devoted solely to advancing the knowledge and practice of esthetic dentistry. Its goal is to provide the very latest evidence-based information in the realm of contemporary interdisciplinary esthetic dentistry through high quality clinical papers, sound research reports and educational features. The range of topics covered in the journal includes: - Interdisciplinary esthetic concepts - Implants - Conservative adhesive restorations - Tooth Whitening - Prosthodontic materials and techniques - Dental materials - Orthodontic, periodontal and endodontic esthetics - Esthetics related research - Innovations in esthetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信