先进的工具集操作和监测亚细胞磷脂酰肌醇3,5-二磷酸。

IF 7.4 1区 生物学 Q1 CELL BIOLOGY
Journal of Cell Biology Pub Date : 2025-06-02 Epub Date: 2025-03-26 DOI:10.1083/jcb.202408158
Joshua G Pemberton, Isobel Barlow-Busch, Meredith L Jenkins, Matthew A H Parson, Farkas Sarnyai, Seyma Nur Bektas, Yeun Ju Kim, John E Heuser, John E Burke, Tamas Balla
{"title":"先进的工具集操作和监测亚细胞磷脂酰肌醇3,5-二磷酸。","authors":"Joshua G Pemberton, Isobel Barlow-Busch, Meredith L Jenkins, Matthew A H Parson, Farkas Sarnyai, Seyma Nur Bektas, Yeun Ju Kim, John E Heuser, John E Burke, Tamas Balla","doi":"10.1083/jcb.202408158","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.</p>","PeriodicalId":15211,"journal":{"name":"Journal of Cell Biology","volume":"224 6","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940380/pdf/","citationCount":"0","resultStr":"{\"title\":\"An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate.\",\"authors\":\"Joshua G Pemberton, Isobel Barlow-Busch, Meredith L Jenkins, Matthew A H Parson, Farkas Sarnyai, Seyma Nur Bektas, Yeun Ju Kim, John E Heuser, John E Burke, Tamas Balla\",\"doi\":\"10.1083/jcb.202408158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.</p>\",\"PeriodicalId\":15211,\"journal\":{\"name\":\"Journal of Cell Biology\",\"volume\":\"224 6\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1083/jcb.202408158\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202408158","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

磷脂酰肌醇(PI) 3,5-二磷酸(PI(3,5)P2)是一种含少量肌醇的磷脂,是内溶酶体功能的重要调节因子。然而,这种调节脂质的亚细胞富集的精确位点和分子靶点尚不清楚。在这里,我们描述了人类PIKfyve酶的短工程催化片段的生成和详细表征,该片段能有效地将PI 3-磷酸转化为PI(3,5)P2。这种新工具允许评估已报道的PI(3,5)P2敏感生物传感器,并表明最近鉴定的Dictyostelium disideum (Dd)蛋白SNXA的phox同源性(PX)结构域可用于监测活细胞中PI(3,5)P2的产生。对基于ddsnxapx的探针进行修改和适应,使其成为基于区室特异性生物发光共振能量转移的生物传感器,可以实时监测整个细胞群体内吞区室内PI(3,5)P2的生成。总的来说,这些分子工具应该允许令人兴奋的新研究,以更好地理解由局部PI(3,5)P2代谢控制的细胞过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An advanced toolset to manipulate and monitor subcellular phosphatidylinositol 3,5-bisphosphate.

Phosphatidylinositol (PI) 3,5-bisphosphate (PI(3,5)P2) is a minor inositol-containing phospholipid that serves as an important regulator of endolysosomal functions. However, the precise sites of subcellular enrichment and molecular targets of this regulatory lipid are poorly understood. Here, we describe the generation and detailed characterization of a short engineered catalytic fragment of the human PIKfyve enzyme, which potently converts PI 3-phosphate to PI(3,5)P2. This novel tool allowed for the evaluation of reported PI(3,5)P2-sensitive biosensors and showed that the recently identified phox homology (PX) domain of the Dictyostelium discoideum (Dd) protein, SNXA, can be used to monitor the production of PI(3,5)P2 in live cells. Modification and adaptation of the DdSNXAPX-based probes into compartment-specific bioluminescence resonance energy transfer-based biosensors allows for the real-time monitoring of PI(3,5)P2 generation within the endocytic compartments of entire cell populations. Collectively, these molecular tools should allow for exciting new studies to better understand the cellular processes controlled by localized PI(3,5)P2 metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cell Biology
Journal of Cell Biology 生物-细胞生物学
CiteScore
12.60
自引率
2.60%
发文量
213
审稿时长
1 months
期刊介绍: The Journal of Cell Biology (JCB) is a comprehensive journal dedicated to publishing original discoveries across all realms of cell biology. We invite papers presenting novel cellular or molecular advancements in various domains of basic cell biology, along with applied cell biology research in diverse systems such as immunology, neurobiology, metabolism, virology, developmental biology, and plant biology. We enthusiastically welcome submissions showcasing significant findings of interest to cell biologists, irrespective of the experimental approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信