解构ENDS气溶胶:生成和表征方法。

IF 2 4区 医学 Q4 TOXICOLOGY
Shaligram Sharma, Maureen Meister, David Christiani, Qian Zhang, Mark Wilson, Travis Goldsmith, I Mark Olfert, Anand Ranpara, Cristi Bell-Huff, Marilyn Black, Jonathan Shannahan, Christa Wright
{"title":"解构ENDS气溶胶:生成和表征方法。","authors":"Shaligram Sharma, Maureen Meister, David Christiani, Qian Zhang, Mark Wilson, Travis Goldsmith, I Mark Olfert, Anand Ranpara, Cristi Bell-Huff, Marilyn Black, Jonathan Shannahan, Christa Wright","doi":"10.1080/08958378.2025.2481434","DOIUrl":null,"url":null,"abstract":"<p><p>While electronic nicotine delivery systems or ENDS are often marketed as a safer alternative to traditional cigarettes, emissions generated during the operation of these devices contain a complex mixture of toxic substances. ENDS emissions are primarily composed of fine particulate matter (PM<sub>2.5</sub>, smaller than 2.5 µm in size) and ultrafine particles/nanoparticles (PM<sub>0.1</sub>, smaller than 100 nm in size), metals (nickel, copper, zinc, tin, lead, and their oxides), carbonyls (formaldehyde, acetaldehyde (a carcinogen), and acrolein), volatile organic compounds (VOCs) (benzene, toluene, and over 70 other VOCs), nicotine, and many unknown chemicals. The levels and composition of these toxic emissions can vary based on factors like device design, e-liquid formulation, device power and temperature levels, and vaping behavior of the user. Within this section of the Special Issue 'Science Education and Research on Vaping and Interventions for Community Engagement', important parameters in defining and characterizing ENDS aerosols will be discussed. Hazardous components of ENDS aerosols including particulate matter, heavy metals, and volatile organic compounds will be delineated and appropriate analytical methods to accurately determine physicochemical properties will be highlighted. Definitions and comparisons of first-hand, second-hand, and third-hand emissions will also be explored alongside pertinent device parameters that influence each type of ENDS emission.</p>","PeriodicalId":13561,"journal":{"name":"Inhalation Toxicology","volume":" ","pages":"1-13"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deconstructing ENDS aerosols: generation and characterization methods.\",\"authors\":\"Shaligram Sharma, Maureen Meister, David Christiani, Qian Zhang, Mark Wilson, Travis Goldsmith, I Mark Olfert, Anand Ranpara, Cristi Bell-Huff, Marilyn Black, Jonathan Shannahan, Christa Wright\",\"doi\":\"10.1080/08958378.2025.2481434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While electronic nicotine delivery systems or ENDS are often marketed as a safer alternative to traditional cigarettes, emissions generated during the operation of these devices contain a complex mixture of toxic substances. ENDS emissions are primarily composed of fine particulate matter (PM<sub>2.5</sub>, smaller than 2.5 µm in size) and ultrafine particles/nanoparticles (PM<sub>0.1</sub>, smaller than 100 nm in size), metals (nickel, copper, zinc, tin, lead, and their oxides), carbonyls (formaldehyde, acetaldehyde (a carcinogen), and acrolein), volatile organic compounds (VOCs) (benzene, toluene, and over 70 other VOCs), nicotine, and many unknown chemicals. The levels and composition of these toxic emissions can vary based on factors like device design, e-liquid formulation, device power and temperature levels, and vaping behavior of the user. Within this section of the Special Issue 'Science Education and Research on Vaping and Interventions for Community Engagement', important parameters in defining and characterizing ENDS aerosols will be discussed. Hazardous components of ENDS aerosols including particulate matter, heavy metals, and volatile organic compounds will be delineated and appropriate analytical methods to accurately determine physicochemical properties will be highlighted. Definitions and comparisons of first-hand, second-hand, and third-hand emissions will also be explored alongside pertinent device parameters that influence each type of ENDS emission.</p>\",\"PeriodicalId\":13561,\"journal\":{\"name\":\"Inhalation Toxicology\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhalation Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08958378.2025.2481434\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhalation Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08958378.2025.2481434","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然电子尼古丁输送系统(ENDS)通常被宣传为比传统香烟更安全的替代品,但这些设备在运行过程中产生的排放物含有复杂的有毒物质混合物。ENDS的排放物主要由细颗粒物(PM2.5,尺寸小于2.5微米)和超细颗粒/纳米颗粒(PM0.1,尺寸小于100纳米)、金属(镍、铜、锌、锡、铅及其氧化物)、羰基(甲醛、乙醛(一种致癌物质)和丙烯醛)、挥发性有机化合物(VOCs)(苯、甲苯和70多种其他VOCs)、尼古丁和许多未知化学物质组成。这些有毒排放物的水平和成分可能会因设备设计、电子烟液体配方、设备功率和温度水平以及用户的吸烟行为等因素而有所不同。在特刊“电子烟的科学教育和研究以及社区参与的干预措施”的这一部分中,将讨论定义和表征电子烟气溶胶的重要参数。将描述ENDS气溶胶的有害成分,包括颗粒物质,重金属和挥发性有机化合物,并强调准确确定物理化学性质的适当分析方法。还将探讨一手、二手和三手排放的定义和比较,以及影响每种终端排放类型的相关设备参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deconstructing ENDS aerosols: generation and characterization methods.

While electronic nicotine delivery systems or ENDS are often marketed as a safer alternative to traditional cigarettes, emissions generated during the operation of these devices contain a complex mixture of toxic substances. ENDS emissions are primarily composed of fine particulate matter (PM2.5, smaller than 2.5 µm in size) and ultrafine particles/nanoparticles (PM0.1, smaller than 100 nm in size), metals (nickel, copper, zinc, tin, lead, and their oxides), carbonyls (formaldehyde, acetaldehyde (a carcinogen), and acrolein), volatile organic compounds (VOCs) (benzene, toluene, and over 70 other VOCs), nicotine, and many unknown chemicals. The levels and composition of these toxic emissions can vary based on factors like device design, e-liquid formulation, device power and temperature levels, and vaping behavior of the user. Within this section of the Special Issue 'Science Education and Research on Vaping and Interventions for Community Engagement', important parameters in defining and characterizing ENDS aerosols will be discussed. Hazardous components of ENDS aerosols including particulate matter, heavy metals, and volatile organic compounds will be delineated and appropriate analytical methods to accurately determine physicochemical properties will be highlighted. Definitions and comparisons of first-hand, second-hand, and third-hand emissions will also be explored alongside pertinent device parameters that influence each type of ENDS emission.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inhalation Toxicology
Inhalation Toxicology 医学-毒理学
CiteScore
4.10
自引率
4.80%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Inhalation Toxicology is a peer-reviewed publication providing a key forum for the latest accomplishments and advancements in concepts, approaches, and procedures presently being used to evaluate the health risk associated with airborne chemicals. The journal publishes original research, reviews, symposia, and workshop topics involving the respiratory system’s functions in health and disease, the pathogenesis and mechanism of injury, the extrapolation of animal data to humans, the effects of inhaled substances on extra-pulmonary systems, as well as reliable and innovative models for predicting human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信