精神分裂症患者不同生理发育阶段的脑电图微状态动态及药物治疗效果

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Shihai Ling, Lingyan Du, Xi Tan, Guozhi Tang, Yue Che, Shirui Song
{"title":"精神分裂症患者不同生理发育阶段的脑电图微状态动态及药物治疗效果","authors":"Shihai Ling, Lingyan Du, Xi Tan, Guozhi Tang, Yue Che, Shirui Song","doi":"10.31083/JIN27059","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Schizophrenia (SCZ) is associated with abnormal neural activities and brain connectivity. Electroencephalography (EEG) microstate is a voltage topographical representation of temporary brain network activations. Most research on EEG microstates in SCZ has focused on differences between patients and healthy controls (HC). However, changes in EEG microstates among SCZ patients across various stages of physiological and cognitive development have not been thoroughly assessed. Consequently, we stratified patients with SCZ into four age-specific cohorts (20-29 years (brain maturation), 30-39 years (stabilization), 40-49 years (early aging), and 50-59 years (advanced aging)) to evaluate EEG microstate alterations. Additionally, we assessed changes in EEG microstates in first-episode psychosis (FEP) before and after an 8-week treatment period.</p><p><strong>Methods: </strong>We acquired 19-channel resting-state EEG from 140 chronic SCZ patients, aged 20 to 59 years, as well as from 19 FEP and 20 healthy controls. FEP patients underwent an 8-week inpatient follow-up. After pre-processing, EEG data from different groups were subjected to microstate analysis, and the K-Means clustering algorithm was applied to classify the data into 4 microstates. Subsequently, templates of these microstates were used to fit EEG signals from each patient, and the collected microstate parameters were analyzed.</p><p><strong>Results: </strong>Patients with SCZ aged 20 to 29 years demonstrated an increased time coverage of microstate class D compared to other age cohorts. In individuals aged 30-39 years, the parameters of microstate class B-specifically time coverage and occurrence-exhibited significant reductions relative to those in the 40-49 and 50-59 years age groups. Compared to healthy controls, microstates class A parameters were significantly reduced in SCZ patients, while microstates class C parameters were prolonged; after 8 weeks of treatment, microstates class A parameters increased and microstates class C parameters decreased.</p><p><strong>Conclusions: </strong>Alterations in microstate dynamics were observed among SCZ patients across developmental stages, suggesting potential changes in brain activity patterns. Changes in microstates A and C may serve as potential biomarkers for evaluating treatment efficacy, establishing a foundation for personalized therapeutic approaches.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 3","pages":"27059"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG Microstate Dynamics during Different Physiological Developmental Stages and the Effects of Medication in Schizophrenia.\",\"authors\":\"Shihai Ling, Lingyan Du, Xi Tan, Guozhi Tang, Yue Che, Shirui Song\",\"doi\":\"10.31083/JIN27059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Schizophrenia (SCZ) is associated with abnormal neural activities and brain connectivity. Electroencephalography (EEG) microstate is a voltage topographical representation of temporary brain network activations. Most research on EEG microstates in SCZ has focused on differences between patients and healthy controls (HC). However, changes in EEG microstates among SCZ patients across various stages of physiological and cognitive development have not been thoroughly assessed. Consequently, we stratified patients with SCZ into four age-specific cohorts (20-29 years (brain maturation), 30-39 years (stabilization), 40-49 years (early aging), and 50-59 years (advanced aging)) to evaluate EEG microstate alterations. Additionally, we assessed changes in EEG microstates in first-episode psychosis (FEP) before and after an 8-week treatment period.</p><p><strong>Methods: </strong>We acquired 19-channel resting-state EEG from 140 chronic SCZ patients, aged 20 to 59 years, as well as from 19 FEP and 20 healthy controls. FEP patients underwent an 8-week inpatient follow-up. After pre-processing, EEG data from different groups were subjected to microstate analysis, and the K-Means clustering algorithm was applied to classify the data into 4 microstates. Subsequently, templates of these microstates were used to fit EEG signals from each patient, and the collected microstate parameters were analyzed.</p><p><strong>Results: </strong>Patients with SCZ aged 20 to 29 years demonstrated an increased time coverage of microstate class D compared to other age cohorts. In individuals aged 30-39 years, the parameters of microstate class B-specifically time coverage and occurrence-exhibited significant reductions relative to those in the 40-49 and 50-59 years age groups. Compared to healthy controls, microstates class A parameters were significantly reduced in SCZ patients, while microstates class C parameters were prolonged; after 8 weeks of treatment, microstates class A parameters increased and microstates class C parameters decreased.</p><p><strong>Conclusions: </strong>Alterations in microstate dynamics were observed among SCZ patients across developmental stages, suggesting potential changes in brain activity patterns. Changes in microstates A and C may serve as potential biomarkers for evaluating treatment efficacy, establishing a foundation for personalized therapeutic approaches.</p>\",\"PeriodicalId\":16160,\"journal\":{\"name\":\"Journal of integrative neuroscience\",\"volume\":\"24 3\",\"pages\":\"27059\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of integrative neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/JIN27059\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN27059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEG Microstate Dynamics during Different Physiological Developmental Stages and the Effects of Medication in Schizophrenia.

Background: Schizophrenia (SCZ) is associated with abnormal neural activities and brain connectivity. Electroencephalography (EEG) microstate is a voltage topographical representation of temporary brain network activations. Most research on EEG microstates in SCZ has focused on differences between patients and healthy controls (HC). However, changes in EEG microstates among SCZ patients across various stages of physiological and cognitive development have not been thoroughly assessed. Consequently, we stratified patients with SCZ into four age-specific cohorts (20-29 years (brain maturation), 30-39 years (stabilization), 40-49 years (early aging), and 50-59 years (advanced aging)) to evaluate EEG microstate alterations. Additionally, we assessed changes in EEG microstates in first-episode psychosis (FEP) before and after an 8-week treatment period.

Methods: We acquired 19-channel resting-state EEG from 140 chronic SCZ patients, aged 20 to 59 years, as well as from 19 FEP and 20 healthy controls. FEP patients underwent an 8-week inpatient follow-up. After pre-processing, EEG data from different groups were subjected to microstate analysis, and the K-Means clustering algorithm was applied to classify the data into 4 microstates. Subsequently, templates of these microstates were used to fit EEG signals from each patient, and the collected microstate parameters were analyzed.

Results: Patients with SCZ aged 20 to 29 years demonstrated an increased time coverage of microstate class D compared to other age cohorts. In individuals aged 30-39 years, the parameters of microstate class B-specifically time coverage and occurrence-exhibited significant reductions relative to those in the 40-49 and 50-59 years age groups. Compared to healthy controls, microstates class A parameters were significantly reduced in SCZ patients, while microstates class C parameters were prolonged; after 8 weeks of treatment, microstates class A parameters increased and microstates class C parameters decreased.

Conclusions: Alterations in microstate dynamics were observed among SCZ patients across developmental stages, suggesting potential changes in brain activity patterns. Changes in microstates A and C may serve as potential biomarkers for evaluating treatment efficacy, establishing a foundation for personalized therapeutic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信