液体储存山羊精子自噬激活的超微结构证据及自噬保护作用分析。

IF 2.6 2区 农林科学 Q1 VETERINARY SCIENCES
Frontiers in Veterinary Science Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.3389/fvets.2025.1543459
Tengfei Liu, Jincong Niu, Yuqi Huang, Hong Chen, Yongjie Wu, Yongping Xu
{"title":"液体储存山羊精子自噬激活的超微结构证据及自噬保护作用分析。","authors":"Tengfei Liu, Jincong Niu, Yuqi Huang, Hong Chen, Yongjie Wu, Yongping Xu","doi":"10.3389/fvets.2025.1543459","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid storage of semen is a widely used technology for promoting genetic improvement in goat breeding. The short shelf life of spermatozoa greatly limits the application of liquid storage, which urgently needs to explore the underlying regulatory factors. Autophagy as a cellular catabolic process plays critical roles in eliminating damaged material, that thus protects the function and fertilizing ability of spermatozoa. Nevertheless, the regulatory mechanisms of autophagy in goat spermatozoa under liquid storage remain unclear. In this study, the typical morphologic abnormalities and ultrastructural changes in goat spermatozoa, such as plasma membrane swollen and shrunken, acrosome exfoliation, and axoneme exposure, were observed after liquid storage at 4°C. Moreover, assessment of the formation of autophagy in liquid-stored goat spermatozoa was performed by a morphological \"gold standard\" of electron microscopy. Notably, a large number of vesicles with double-membrane structure indicating autophagosome were found to surround the aberrant spermatozoa, suggesting the activation of autophagy. Several proteins, such as LC3, ATG5, and p62, exhibited differential expression after liquid storage, which further validated the occurrence of autophagy in liquid-stored goat spermatozoa. Furthermore, chloroquine treatment was used to inhibit the autophagy of spermatozoa, which caused a significantly decrease in the quality of liquid-stored spermatozoa, including motility, viability, plasma membrane integrity, and acrosome integrity. Significant increase in ROS and MDA levels of spermatozoa and significant decrease in Ca<sup>2+</sup> influx and protein tyrosine phosphorylation of spermatozoa were also detected after chloroquine-induced autophagy inhibition. The ultrastructural observation of double-membrane autophagosome provides strong evidences for the activation of autophagy in goat spermatozoa under liquid storage. The inhibition of autophagy mediated by chloroquine indicated that autophagy plays vital roles in the survival of spermatozoa. These results facilitate understanding the activation of autophagy in spermatozoa and provide valuable references for uncovering the underlying regulatory mechanisms of liquid storage of goat spermatozoa.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"12 ","pages":"1543459"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948349/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrastructural evidence for the activation of autophagy and analysis of the protective role of autophagy in goat spermatozoa under liquid storage.\",\"authors\":\"Tengfei Liu, Jincong Niu, Yuqi Huang, Hong Chen, Yongjie Wu, Yongping Xu\",\"doi\":\"10.3389/fvets.2025.1543459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid storage of semen is a widely used technology for promoting genetic improvement in goat breeding. The short shelf life of spermatozoa greatly limits the application of liquid storage, which urgently needs to explore the underlying regulatory factors. Autophagy as a cellular catabolic process plays critical roles in eliminating damaged material, that thus protects the function and fertilizing ability of spermatozoa. Nevertheless, the regulatory mechanisms of autophagy in goat spermatozoa under liquid storage remain unclear. In this study, the typical morphologic abnormalities and ultrastructural changes in goat spermatozoa, such as plasma membrane swollen and shrunken, acrosome exfoliation, and axoneme exposure, were observed after liquid storage at 4°C. Moreover, assessment of the formation of autophagy in liquid-stored goat spermatozoa was performed by a morphological \\\"gold standard\\\" of electron microscopy. Notably, a large number of vesicles with double-membrane structure indicating autophagosome were found to surround the aberrant spermatozoa, suggesting the activation of autophagy. Several proteins, such as LC3, ATG5, and p62, exhibited differential expression after liquid storage, which further validated the occurrence of autophagy in liquid-stored goat spermatozoa. Furthermore, chloroquine treatment was used to inhibit the autophagy of spermatozoa, which caused a significantly decrease in the quality of liquid-stored spermatozoa, including motility, viability, plasma membrane integrity, and acrosome integrity. Significant increase in ROS and MDA levels of spermatozoa and significant decrease in Ca<sup>2+</sup> influx and protein tyrosine phosphorylation of spermatozoa were also detected after chloroquine-induced autophagy inhibition. The ultrastructural observation of double-membrane autophagosome provides strong evidences for the activation of autophagy in goat spermatozoa under liquid storage. The inhibition of autophagy mediated by chloroquine indicated that autophagy plays vital roles in the survival of spermatozoa. These results facilitate understanding the activation of autophagy in spermatozoa and provide valuable references for uncovering the underlying regulatory mechanisms of liquid storage of goat spermatozoa.</p>\",\"PeriodicalId\":12772,\"journal\":{\"name\":\"Frontiers in Veterinary Science\",\"volume\":\"12 \",\"pages\":\"1543459\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948349/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Veterinary Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3389/fvets.2025.1543459\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2025.1543459","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

精液液体储存技术在山羊育种中被广泛应用于促进遗传改良。精子的保质期短,极大地限制了液体储存的应用,迫切需要探索其潜在的调控因素。自噬作为一种细胞分解代谢过程,在清除受损物质方面起着至关重要的作用,从而保护精子的功能和受精能力。然而,液体储存条件下山羊精子自噬的调控机制尚不清楚。本研究观察了山羊精子在4°C液体储存后的典型形态异常和超微结构变化,如质膜肿胀和萎缩,顶体脱落,轴突暴露。此外,通过电镜形态学“金标准”来评估液体储存山羊精子自噬的形成。值得注意的是,在异常精子周围发现了大量双膜结构的囊泡,提示自噬体的激活。液体储存后,LC3、ATG5、p62等蛋白出现差异表达,进一步证实了液体储存山羊精子中存在自噬现象。此外,氯喹处理抑制了精子的自噬,导致液体储存精子的活力、活力、质膜完整性和顶体完整性等质量显著下降。在氯喹诱导的自噬抑制后,精子的ROS和MDA水平显著升高,Ca2+内流和蛋白酪氨酸磷酸化水平显著降低。双膜自噬体的超微结构观察为液体储存条件下山羊精子自噬激活提供了有力证据。氯喹对自噬的抑制表明自噬在精子存活中起着至关重要的作用。这些结果有助于理解精子自噬的激活,为揭示山羊精子液体储存的潜在调控机制提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrastructural evidence for the activation of autophagy and analysis of the protective role of autophagy in goat spermatozoa under liquid storage.

Liquid storage of semen is a widely used technology for promoting genetic improvement in goat breeding. The short shelf life of spermatozoa greatly limits the application of liquid storage, which urgently needs to explore the underlying regulatory factors. Autophagy as a cellular catabolic process plays critical roles in eliminating damaged material, that thus protects the function and fertilizing ability of spermatozoa. Nevertheless, the regulatory mechanisms of autophagy in goat spermatozoa under liquid storage remain unclear. In this study, the typical morphologic abnormalities and ultrastructural changes in goat spermatozoa, such as plasma membrane swollen and shrunken, acrosome exfoliation, and axoneme exposure, were observed after liquid storage at 4°C. Moreover, assessment of the formation of autophagy in liquid-stored goat spermatozoa was performed by a morphological "gold standard" of electron microscopy. Notably, a large number of vesicles with double-membrane structure indicating autophagosome were found to surround the aberrant spermatozoa, suggesting the activation of autophagy. Several proteins, such as LC3, ATG5, and p62, exhibited differential expression after liquid storage, which further validated the occurrence of autophagy in liquid-stored goat spermatozoa. Furthermore, chloroquine treatment was used to inhibit the autophagy of spermatozoa, which caused a significantly decrease in the quality of liquid-stored spermatozoa, including motility, viability, plasma membrane integrity, and acrosome integrity. Significant increase in ROS and MDA levels of spermatozoa and significant decrease in Ca2+ influx and protein tyrosine phosphorylation of spermatozoa were also detected after chloroquine-induced autophagy inhibition. The ultrastructural observation of double-membrane autophagosome provides strong evidences for the activation of autophagy in goat spermatozoa under liquid storage. The inhibition of autophagy mediated by chloroquine indicated that autophagy plays vital roles in the survival of spermatozoa. These results facilitate understanding the activation of autophagy in spermatozoa and provide valuable references for uncovering the underlying regulatory mechanisms of liquid storage of goat spermatozoa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Veterinary Science
Frontiers in Veterinary Science Veterinary-General Veterinary
CiteScore
4.80
自引率
9.40%
发文量
1870
审稿时长
14 weeks
期刊介绍: Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy. Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field. Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信