{"title":"靶向FGF23-αKlotho信号系统能否延缓磷酸盐驱动的器官损伤?","authors":"Mohammed S Razzaque, Moosa Mohammadi","doi":"10.1080/14728222.2025.2482552","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Inexorable high serum phosphate levels in chronic kidney disease (CKD) patients deteriorate the functionality of the musculoskeletal, renal, and cardiovascular systems, thereby contributing to increased morbidity and mortality. Higher phosphate balance has also been correlated with increased mortality rates in individuals with normal renal function, independent of other comorbidities. Clinical and epidemiological studies of CKD patients and healthy subjects, alongside evidence of accelerated aging in murine models induced by excessive phosphate loading, indicate that phosphate toxicity is a driver of premature aging and age-related organ damage.</p><p><strong>Area covered: </strong>This article briefly discusses the causes and consequences of phosphate toxicity in the context of organ damage and aging while also elaborating on the therapeutic potential of the fibroblast growth factor 23 (FGF23) hormone signaling system in alleviating phosphate toxicity in patients with normal kidney function and CKD.</p><p><strong>Expert opinion: </strong>Human age-associated disorders may be delayed through dietary programs or pharmacological interventions capable of modulating the activity of FGF23 signaling to reduce the systemic phosphate burden.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":" ","pages":"93-100"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can targeting the FGF23-αKlotho signaling system delay phosphate-driven organ damage?\",\"authors\":\"Mohammed S Razzaque, Moosa Mohammadi\",\"doi\":\"10.1080/14728222.2025.2482552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Inexorable high serum phosphate levels in chronic kidney disease (CKD) patients deteriorate the functionality of the musculoskeletal, renal, and cardiovascular systems, thereby contributing to increased morbidity and mortality. Higher phosphate balance has also been correlated with increased mortality rates in individuals with normal renal function, independent of other comorbidities. Clinical and epidemiological studies of CKD patients and healthy subjects, alongside evidence of accelerated aging in murine models induced by excessive phosphate loading, indicate that phosphate toxicity is a driver of premature aging and age-related organ damage.</p><p><strong>Area covered: </strong>This article briefly discusses the causes and consequences of phosphate toxicity in the context of organ damage and aging while also elaborating on the therapeutic potential of the fibroblast growth factor 23 (FGF23) hormone signaling system in alleviating phosphate toxicity in patients with normal kidney function and CKD.</p><p><strong>Expert opinion: </strong>Human age-associated disorders may be delayed through dietary programs or pharmacological interventions capable of modulating the activity of FGF23 signaling to reduce the systemic phosphate burden.</p>\",\"PeriodicalId\":12185,\"journal\":{\"name\":\"Expert Opinion on Therapeutic Targets\",\"volume\":\" \",\"pages\":\"93-100\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Opinion on Therapeutic Targets\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14728222.2025.2482552\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2025.2482552","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Can targeting the FGF23-αKlotho signaling system delay phosphate-driven organ damage?
Introduction: Inexorable high serum phosphate levels in chronic kidney disease (CKD) patients deteriorate the functionality of the musculoskeletal, renal, and cardiovascular systems, thereby contributing to increased morbidity and mortality. Higher phosphate balance has also been correlated with increased mortality rates in individuals with normal renal function, independent of other comorbidities. Clinical and epidemiological studies of CKD patients and healthy subjects, alongside evidence of accelerated aging in murine models induced by excessive phosphate loading, indicate that phosphate toxicity is a driver of premature aging and age-related organ damage.
Area covered: This article briefly discusses the causes and consequences of phosphate toxicity in the context of organ damage and aging while also elaborating on the therapeutic potential of the fibroblast growth factor 23 (FGF23) hormone signaling system in alleviating phosphate toxicity in patients with normal kidney function and CKD.
Expert opinion: Human age-associated disorders may be delayed through dietary programs or pharmacological interventions capable of modulating the activity of FGF23 signaling to reduce the systemic phosphate burden.
期刊介绍:
The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials.
The Editors welcome:
Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development.
Articles should not include clinical information including specific drugs and clinical trials.
Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs.
The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.