玻璃化转变:拓扑视角。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-28 DOI:10.3390/e27030258
Arthur Vesperini, Roberto Franzosi, Marco Pettini
{"title":"玻璃化转变:拓扑视角。","authors":"Arthur Vesperini, Roberto Franzosi, Marco Pettini","doi":"10.3390/e27030258","DOIUrl":null,"url":null,"abstract":"<p><p>Resorting to microcanonical ensemble Monte Carlo simulations, we study the geometric and topological properties of the state space of a model of a network glass-former. This model, a Lennard-Jones binary mixture, does not crystallize due to frustration. We have found two peaks in specific heat at equilibrium and at low energy, corresponding to important changes in local ordering. These singularities were accompanied by inflection points in geometrical markers of the potential energy level sets-namely, the mean curvature, the dispersion of the principal curvatures, and the variance of the scalar curvature. Pinkall's and Overholt's theorems closely relate these quantities to the topological properties of the accessible state-space manifold. Thus, our analysis provides strong indications that the glass transition is associated with major changes in the topology of the energy level sets. This important result suggests that this phase transition can be understood through the topological theory of phase transitions.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941106/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Glass Transition: A Topological Perspective.\",\"authors\":\"Arthur Vesperini, Roberto Franzosi, Marco Pettini\",\"doi\":\"10.3390/e27030258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Resorting to microcanonical ensemble Monte Carlo simulations, we study the geometric and topological properties of the state space of a model of a network glass-former. This model, a Lennard-Jones binary mixture, does not crystallize due to frustration. We have found two peaks in specific heat at equilibrium and at low energy, corresponding to important changes in local ordering. These singularities were accompanied by inflection points in geometrical markers of the potential energy level sets-namely, the mean curvature, the dispersion of the principal curvatures, and the variance of the scalar curvature. Pinkall's and Overholt's theorems closely relate these quantities to the topological properties of the accessible state-space manifold. Thus, our analysis provides strong indications that the glass transition is associated with major changes in the topology of the energy level sets. This important result suggests that this phase transition can be understood through the topological theory of phase transitions.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941106/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030258\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030258","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过微观经典集合蒙特卡洛模拟,我们研究了网络玻璃成型器模型状态空间的几何和拓扑特性。该模型是一种伦纳德-琼斯二元混合物,由于受挫而不会结晶。我们发现比热在平衡和低能时有两个峰值,与局部有序性的重要变化相对应。这些奇点伴随着势能级集几何标记的拐点,即平均曲率、主曲率的离散度和标量曲率的方差。平卡尔定理和奥弗霍特定理将这些量与可访问状态空间流形的拓扑特性紧密联系起来。因此,我们的分析有力地表明,玻璃化转变与能级集拓扑结构的重大变化有关。这一重要结果表明,可以通过相变的拓扑理论来理解这一相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Glass Transition: A Topological Perspective.

Resorting to microcanonical ensemble Monte Carlo simulations, we study the geometric and topological properties of the state space of a model of a network glass-former. This model, a Lennard-Jones binary mixture, does not crystallize due to frustration. We have found two peaks in specific heat at equilibrium and at low energy, corresponding to important changes in local ordering. These singularities were accompanied by inflection points in geometrical markers of the potential energy level sets-namely, the mean curvature, the dispersion of the principal curvatures, and the variance of the scalar curvature. Pinkall's and Overholt's theorems closely relate these quantities to the topological properties of the accessible state-space manifold. Thus, our analysis provides strong indications that the glass transition is associated with major changes in the topology of the energy level sets. This important result suggests that this phase transition can be understood through the topological theory of phase transitions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信