混合量子态的顺序判别。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-27 DOI:10.3390/e27030246
Jin-Hua Zhang, Fu-Lin Zhang, Yan Gao, Wei Qin, Shao-Ming Fei
{"title":"混合量子态的顺序判别。","authors":"Jin-Hua Zhang, Fu-Lin Zhang, Yan Gao, Wei Qin, Shao-Ming Fei","doi":"10.3390/e27030246","DOIUrl":null,"url":null,"abstract":"<p><p>Classical mixtures of quantum states often give rise to decoherence and are generally considered detrimental to quantum processing. However, in the framework of sequential measurement, such mixtures can be beneficial for state discrimination. We investigate the sequential discrimination of mixed states and compare the results with those of pure states under the condition of equal fidelity. It is found that the successful probability of the mixed-state protocol is superior to the pure one under the equal-fidelity condition. It is shown that the difference between the sequential discrimination of pure and mixed states is more reliable under the equal-fidelity condition than under single-shot discrimination, and this difference increases with the mixability of the initial mixed states. For scenarios in which classical communication is allowed, the optimal successful probability of pure-state discriminations is larger than that for mixed states on the contrary. We also show that the classical mixture of basic vectors from quantum decoherence has a subtle impact on the communication channel induced by the coincidence of the maximal mutual information and optimal successful probability of sequential discrimination for pure states.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sequential Discrimination of Mixed Quantum States.\",\"authors\":\"Jin-Hua Zhang, Fu-Lin Zhang, Yan Gao, Wei Qin, Shao-Ming Fei\",\"doi\":\"10.3390/e27030246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classical mixtures of quantum states often give rise to decoherence and are generally considered detrimental to quantum processing. However, in the framework of sequential measurement, such mixtures can be beneficial for state discrimination. We investigate the sequential discrimination of mixed states and compare the results with those of pure states under the condition of equal fidelity. It is found that the successful probability of the mixed-state protocol is superior to the pure one under the equal-fidelity condition. It is shown that the difference between the sequential discrimination of pure and mixed states is more reliable under the equal-fidelity condition than under single-shot discrimination, and this difference increases with the mixability of the initial mixed states. For scenarios in which classical communication is allowed, the optimal successful probability of pure-state discriminations is larger than that for mixed states on the contrary. We also show that the classical mixture of basic vectors from quantum decoherence has a subtle impact on the communication channel induced by the coincidence of the maximal mutual information and optimal successful probability of sequential discrimination for pure states.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030246\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030246","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子态的经典混合物通常会产生退相干现象,通常被认为不利于量子处理。然而,在顺序测量的框架下,这种混合物却有利于状态判别。我们研究了混合态的顺序辨别,并将结果与同等保真度条件下的纯态进行了比较。研究发现,在等保真度条件下,混合状态协议的成功概率优于纯状态协议。研究表明,在等保真度条件下,纯态和混合态的顺序判别差异比单次判别更可靠,而且这种差异随着初始混合态的可混合性而增大。在允许经典通信的情况下,纯态判别的最优成功概率反而大于混合态判别的最优成功概率。我们还证明,量子退相干产生的基本矢量的经典混合对通信信道有微妙的影响,这种影响是由最大互信息和纯态顺序判别的最优成功概率的重合引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Discrimination of Mixed Quantum States.

Classical mixtures of quantum states often give rise to decoherence and are generally considered detrimental to quantum processing. However, in the framework of sequential measurement, such mixtures can be beneficial for state discrimination. We investigate the sequential discrimination of mixed states and compare the results with those of pure states under the condition of equal fidelity. It is found that the successful probability of the mixed-state protocol is superior to the pure one under the equal-fidelity condition. It is shown that the difference between the sequential discrimination of pure and mixed states is more reliable under the equal-fidelity condition than under single-shot discrimination, and this difference increases with the mixability of the initial mixed states. For scenarios in which classical communication is allowed, the optimal successful probability of pure-state discriminations is larger than that for mixed states on the contrary. We also show that the classical mixture of basic vectors from quantum decoherence has a subtle impact on the communication channel induced by the coincidence of the maximal mutual information and optimal successful probability of sequential discrimination for pure states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信