量子弱值和“哪条路?”的问题。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-03-01 DOI:10.3390/e27030259
Anton Uranga, Elena Akhmatskaya, Dmitri Sokolovski
{"title":"量子弱值和“哪条路?”的问题。","authors":"Anton Uranga, Elena Akhmatskaya, Dmitri Sokolovski","doi":"10.3390/e27030259","DOIUrl":null,"url":null,"abstract":"<p><p>The Uncertainty Principle forbids one to determine which of the two paths a quantum system has travelled, unless interference between the alternatives had been destroyed by a measuring device, e.g., by a pointer. One can try to weaken the coupling between the device and the system in order to avoid the veto. We demonstrate, however, that a weak pointer is at the same time an inaccurate one, and the information about the path taken by the system in each individual trial is inevitably lost. We show also that a similar problem occurs if a classical system is monitored by an inaccurate quantum meter. In both cases, one can still determine some characteristic of the corresponding statistical ensemble, a relation between path probabilities in the classical case, and a relation between the probability amplitudes if a quantum system is involved.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941137/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum Weak Values and the \\\"Which Way?\\\" Question.\",\"authors\":\"Anton Uranga, Elena Akhmatskaya, Dmitri Sokolovski\",\"doi\":\"10.3390/e27030259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Uncertainty Principle forbids one to determine which of the two paths a quantum system has travelled, unless interference between the alternatives had been destroyed by a measuring device, e.g., by a pointer. One can try to weaken the coupling between the device and the system in order to avoid the veto. We demonstrate, however, that a weak pointer is at the same time an inaccurate one, and the information about the path taken by the system in each individual trial is inevitably lost. We show also that a similar problem occurs if a classical system is monitored by an inaccurate quantum meter. In both cases, one can still determine some characteristic of the corresponding statistical ensemble, a relation between path probabilities in the classical case, and a relation between the probability amplitudes if a quantum system is involved.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030259\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030259","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

不确定性原理禁止人们确定量子系统走过的两条路径中的哪一条,除非测量设备(例如指针)已经消除了两条路径之间的干扰。为了避免否决,可以尝试削弱设备和系统之间的耦合。然而,我们证明,弱指针同时也是不准确的指针,并且关于系统在每次试验中所采取的路径的信息不可避免地丢失。我们还表明,如果一个经典系统被一个不准确的量子计监测,也会出现类似的问题。在这两种情况下,人们仍然可以确定相应统计系综的某些特征,在经典情况下路径概率之间的关系,以及在涉及量子系统时概率幅值之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Weak Values and the "Which Way?" Question.

The Uncertainty Principle forbids one to determine which of the two paths a quantum system has travelled, unless interference between the alternatives had been destroyed by a measuring device, e.g., by a pointer. One can try to weaken the coupling between the device and the system in order to avoid the veto. We demonstrate, however, that a weak pointer is at the same time an inaccurate one, and the information about the path taken by the system in each individual trial is inevitably lost. We show also that a similar problem occurs if a classical system is monitored by an inaccurate quantum meter. In both cases, one can still determine some characteristic of the corresponding statistical ensemble, a relation between path probabilities in the classical case, and a relation between the probability amplitudes if a quantum system is involved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信