{"title":"IP产品颜色匹配与形状设计的生成式大模型驱动方法。","authors":"Fan Wu, Peng Lu, Shih-Wen Hsiao","doi":"10.3390/e27030319","DOIUrl":null,"url":null,"abstract":"<p><p>The rise in generative large models has gradually influenced traditional product design processes, with AI-generated content (AIGC) playing an increasingly significant role. Globally, tourism IP cultural products are crucial for promoting sustainable tourism development. However, there is a lack of practical design methodologies incorporating generative large models for tourism IP cultural products. Therefore, this study proposes a methodology for the color matching and shape design of tourism IP cultural products using multimodal generative large models. The process includes four phases, as follows: (1) GPT-4o is used to explore visitors' emotional needs and identify target imagery; (2) Midjourney generates shape options that align with the target imagery, and the optimal shape is selected through quadratic curvature entropy method based on shape curves; (3) Midjourney generates colored images reflecting the target imagery, and representative colors are selected using AHP and OpenCV; and (4) color harmony calculations are used to identify the best color combination. These alternatives are evaluated quantitatively and qualitatively using a color-matching aesthetic measurement formula and a sensibility questionnaire. The effectiveness of the methodology is demonstrated through a case study on the harbor seal, showing a strong correlation between quantitative and qualitative evaluations, confirming its effectiveness in tourism IP product design.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940971/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Large Model-Driven Methodology for Color Matching and Shape Design in IP Products.\",\"authors\":\"Fan Wu, Peng Lu, Shih-Wen Hsiao\",\"doi\":\"10.3390/e27030319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rise in generative large models has gradually influenced traditional product design processes, with AI-generated content (AIGC) playing an increasingly significant role. Globally, tourism IP cultural products are crucial for promoting sustainable tourism development. However, there is a lack of practical design methodologies incorporating generative large models for tourism IP cultural products. Therefore, this study proposes a methodology for the color matching and shape design of tourism IP cultural products using multimodal generative large models. The process includes four phases, as follows: (1) GPT-4o is used to explore visitors' emotional needs and identify target imagery; (2) Midjourney generates shape options that align with the target imagery, and the optimal shape is selected through quadratic curvature entropy method based on shape curves; (3) Midjourney generates colored images reflecting the target imagery, and representative colors are selected using AHP and OpenCV; and (4) color harmony calculations are used to identify the best color combination. These alternatives are evaluated quantitatively and qualitatively using a color-matching aesthetic measurement formula and a sensibility questionnaire. The effectiveness of the methodology is demonstrated through a case study on the harbor seal, showing a strong correlation between quantitative and qualitative evaluations, confirming its effectiveness in tourism IP product design.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940971/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030319\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030319","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generative Large Model-Driven Methodology for Color Matching and Shape Design in IP Products.
The rise in generative large models has gradually influenced traditional product design processes, with AI-generated content (AIGC) playing an increasingly significant role. Globally, tourism IP cultural products are crucial for promoting sustainable tourism development. However, there is a lack of practical design methodologies incorporating generative large models for tourism IP cultural products. Therefore, this study proposes a methodology for the color matching and shape design of tourism IP cultural products using multimodal generative large models. The process includes four phases, as follows: (1) GPT-4o is used to explore visitors' emotional needs and identify target imagery; (2) Midjourney generates shape options that align with the target imagery, and the optimal shape is selected through quadratic curvature entropy method based on shape curves; (3) Midjourney generates colored images reflecting the target imagery, and representative colors are selected using AHP and OpenCV; and (4) color harmony calculations are used to identify the best color combination. These alternatives are evaluated quantitatively and qualitatively using a color-matching aesthetic measurement formula and a sensibility questionnaire. The effectiveness of the methodology is demonstrated through a case study on the harbor seal, showing a strong correlation between quantitative and qualitative evaluations, confirming its effectiveness in tourism IP product design.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.