无人机群自组织网络的时隙分配协议:一种分布式联盟形成博弈方法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-28 DOI:10.3390/e27030256
Liubin Song, Daoxing Guo
{"title":"无人机群自组织网络的时隙分配协议:一种分布式联盟形成博弈方法。","authors":"Liubin Song, Daoxing Guo","doi":"10.3390/e27030256","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, especially in offshore and remote areas. A key operational aspect in large-scale UAV swarm networks is slot allocation for large capacity and a low probability of conflict. Traditional methods typically form coalitions among UAVs that are in close spatial proximity to reduce internal network interference, thereby achieving greater throughput. However, significant internal interference still persists. Given that UAV networks are required to transmit a substantial amount of safety-related control information, any packet loss due to internal interference can easily pose potential risks. In this paper, we propose a distributed time coalition formation game algorithm that ensures the absence of internal interference and collisions while sharing time slot resources, thereby enhancing the network's throughput performance. Instead of forming a coalition from UAVs within a contiguous block area as used in prior studies, UAV nodes with no interference from each other form a coalition that can be called a time coalition. UAVs belonging to one coalition share their transmitting slots with each other, and thus, every UAV node achieves the whole transmitting slots of coalition members. They can transmit data packets simultaneously with no interference. In addition, a distributed coalition formation game-based TDMA (DCFG-TDMA) protocol based on the distributed time coalition formation algorithm is designed for UAV swarm ad hoc networks. Our simulation results verify that the proposed algorithm can significantly improve the UAV throughput compared with that of the conventional TDMA protocol.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941670/pdf/","citationCount":"0","resultStr":"{\"title\":\"Slot Allocation Protocol for UAV Swarm Ad Hoc Networks: A Distributed Coalition Formation Game Approach.\",\"authors\":\"Liubin Song, Daoxing Guo\",\"doi\":\"10.3390/e27030256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, especially in offshore and remote areas. A key operational aspect in large-scale UAV swarm networks is slot allocation for large capacity and a low probability of conflict. Traditional methods typically form coalitions among UAVs that are in close spatial proximity to reduce internal network interference, thereby achieving greater throughput. However, significant internal interference still persists. Given that UAV networks are required to transmit a substantial amount of safety-related control information, any packet loss due to internal interference can easily pose potential risks. In this paper, we propose a distributed time coalition formation game algorithm that ensures the absence of internal interference and collisions while sharing time slot resources, thereby enhancing the network's throughput performance. Instead of forming a coalition from UAVs within a contiguous block area as used in prior studies, UAV nodes with no interference from each other form a coalition that can be called a time coalition. UAVs belonging to one coalition share their transmitting slots with each other, and thus, every UAV node achieves the whole transmitting slots of coalition members. They can transmit data packets simultaneously with no interference. In addition, a distributed coalition formation game-based TDMA (DCFG-TDMA) protocol based on the distributed time coalition formation algorithm is designed for UAV swarm ad hoc networks. Our simulation results verify that the proposed algorithm can significantly improve the UAV throughput compared with that of the conventional TDMA protocol.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941670/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030256\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030256","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着无人机(UAV)制造技术的快速发展,大规模无人机蜂群特设网络正广泛应用于军事和民用领域。配备了特设网络和卫星网络的无人机群正在为 6G 异构网络而开发,尤其是在近海和偏远地区。大规模无人机群网络的一个关键操作方面是时隙分配,以实现大容量和低冲突概率。传统方法通常是在空间距离较近的无人机之间形成联盟,以减少内部网络干扰,从而实现更大的吞吐量。然而,严重的内部干扰依然存在。鉴于无人机网络需要传输大量与安全相关的控制信息,任何由于内部干扰造成的数据包丢失都很容易带来潜在风险。在本文中,我们提出了一种分布式时间联盟形成博弈算法,在共享时隙资源的同时确保没有内部干扰和碰撞,从而提高网络的吞吐性能。与以往研究中使用的由毗连区块内的无人机组成联盟不同,相互之间没有干扰的无人机节点组成一个联盟,可称为一个时间联盟。属于一个联盟的无人机相互共享发射时隙,因此每个无人机节点都能获得联盟成员的全部发射时隙。它们可以不受干扰地同时传输数据包。此外,我们还为无人机蜂群特设网络设计了基于分布式时间联盟形成算法的分布式联盟形成博弈 TDMA(DCFG-TDMA)协议。我们的仿真结果证实,与传统的 TDMA 协议相比,所提出的算法能显著提高无人机的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slot Allocation Protocol for UAV Swarm Ad Hoc Networks: A Distributed Coalition Formation Game Approach.

With the rapid development of unmanned aerial vehicle (UAV) manufacturing technology, large-scale UAV swarm ad hoc networks are becoming widely used in military and civilian spheres. UAV swarms equipped with ad hoc networks and satellite networks are being developed for 6G heterogeneous networks, especially in offshore and remote areas. A key operational aspect in large-scale UAV swarm networks is slot allocation for large capacity and a low probability of conflict. Traditional methods typically form coalitions among UAVs that are in close spatial proximity to reduce internal network interference, thereby achieving greater throughput. However, significant internal interference still persists. Given that UAV networks are required to transmit a substantial amount of safety-related control information, any packet loss due to internal interference can easily pose potential risks. In this paper, we propose a distributed time coalition formation game algorithm that ensures the absence of internal interference and collisions while sharing time slot resources, thereby enhancing the network's throughput performance. Instead of forming a coalition from UAVs within a contiguous block area as used in prior studies, UAV nodes with no interference from each other form a coalition that can be called a time coalition. UAVs belonging to one coalition share their transmitting slots with each other, and thus, every UAV node achieves the whole transmitting slots of coalition members. They can transmit data packets simultaneously with no interference. In addition, a distributed coalition formation game-based TDMA (DCFG-TDMA) protocol based on the distributed time coalition formation algorithm is designed for UAV swarm ad hoc networks. Our simulation results verify that the proposed algorithm can significantly improve the UAV throughput compared with that of the conventional TDMA protocol.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信