Mehdi Kheirollahpour, Nader Shokoufi, Mohsen Lotfi
{"title":"光学技术在病毒早期检测中的潜力应对未来病毒爆发的前景。","authors":"Mehdi Kheirollahpour, Nader Shokoufi, Mohsen Lotfi","doi":"10.1080/10408347.2025.2481406","DOIUrl":null,"url":null,"abstract":"<p><p>The urgent need for sensitive, rapid, and reliable diagnostic methodologies to control and prevent life-threatening pandemic infectious disease, such as COVID-19, remains a critical priority. Timely and on-site detection of viral pathogens is essential for effective disease management and mitigation of societal disruptions. Recent advancements in optical diagnostic methods have positioned them at the forefront of healthcare diagnostics, offering high sensitivity and specificity as viable alternatives to conventional techniques such as the Polymerase Chain Reaction (PCR), which often suffer from time delays and limited accessibility in resource-constrained environments. This review elucidates the potential of various optical diagnostic techniques, highlighting their advantages over traditional methods. It encompasses a range of optical modalities, including fluorescence-based approaches, Raman spectroscopy (RS), Plasmonic techniques (e.g., surface plasmon resonance (SPR), localized SPR, (LSPR), surface-enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence (SEF)), super resolution microscopies (SRMs), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and integrated platforms such as waveguides and molecularly imprinted polymer (MIP)-based biosensors. Additionally, the evolution of novel biosensors, particularly 5th and 6th generation biosensors, in healthcare and the challenges related to these technologies were discussed. This studies reviewed aims to advance the development of portable, sensitive, specific, and cost-effective point-of-care (POC) diagnostic devices for the rapid detection of viral pathogens.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-29"},"PeriodicalIF":5.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Potential of Optical Technologies in Early Virus Detection; Prospects in Addressing Future Viral Outbreaks.\",\"authors\":\"Mehdi Kheirollahpour, Nader Shokoufi, Mohsen Lotfi\",\"doi\":\"10.1080/10408347.2025.2481406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The urgent need for sensitive, rapid, and reliable diagnostic methodologies to control and prevent life-threatening pandemic infectious disease, such as COVID-19, remains a critical priority. Timely and on-site detection of viral pathogens is essential for effective disease management and mitigation of societal disruptions. Recent advancements in optical diagnostic methods have positioned them at the forefront of healthcare diagnostics, offering high sensitivity and specificity as viable alternatives to conventional techniques such as the Polymerase Chain Reaction (PCR), which often suffer from time delays and limited accessibility in resource-constrained environments. This review elucidates the potential of various optical diagnostic techniques, highlighting their advantages over traditional methods. It encompasses a range of optical modalities, including fluorescence-based approaches, Raman spectroscopy (RS), Plasmonic techniques (e.g., surface plasmon resonance (SPR), localized SPR, (LSPR), surface-enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence (SEF)), super resolution microscopies (SRMs), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and integrated platforms such as waveguides and molecularly imprinted polymer (MIP)-based biosensors. Additionally, the evolution of novel biosensors, particularly 5th and 6th generation biosensors, in healthcare and the challenges related to these technologies were discussed. This studies reviewed aims to advance the development of portable, sensitive, specific, and cost-effective point-of-care (POC) diagnostic devices for the rapid detection of viral pathogens.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-29\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2025.2481406\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2481406","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
The Potential of Optical Technologies in Early Virus Detection; Prospects in Addressing Future Viral Outbreaks.
The urgent need for sensitive, rapid, and reliable diagnostic methodologies to control and prevent life-threatening pandemic infectious disease, such as COVID-19, remains a critical priority. Timely and on-site detection of viral pathogens is essential for effective disease management and mitigation of societal disruptions. Recent advancements in optical diagnostic methods have positioned them at the forefront of healthcare diagnostics, offering high sensitivity and specificity as viable alternatives to conventional techniques such as the Polymerase Chain Reaction (PCR), which often suffer from time delays and limited accessibility in resource-constrained environments. This review elucidates the potential of various optical diagnostic techniques, highlighting their advantages over traditional methods. It encompasses a range of optical modalities, including fluorescence-based approaches, Raman spectroscopy (RS), Plasmonic techniques (e.g., surface plasmon resonance (SPR), localized SPR, (LSPR), surface-enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence (SEF)), super resolution microscopies (SRMs), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and integrated platforms such as waveguides and molecularly imprinted polymer (MIP)-based biosensors. Additionally, the evolution of novel biosensors, particularly 5th and 6th generation biosensors, in healthcare and the challenges related to these technologies were discussed. This studies reviewed aims to advance the development of portable, sensitive, specific, and cost-effective point-of-care (POC) diagnostic devices for the rapid detection of viral pathogens.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.