Konstantinos Kyparissis, Nikolaos Kladovasilakis, Maria-Styliani Daraki, Anastasios Raptis, Polyzois Tsantrizos, Konstantinos Moulakakis, John Kakisis, Christos Manopoulos, Georgios E Stavroulakis
{"title":"Numerical Evaluation of Abdominal Aortic Aneurysms Utilizing Finite Element Method.","authors":"Konstantinos Kyparissis, Nikolaos Kladovasilakis, Maria-Styliani Daraki, Anastasios Raptis, Polyzois Tsantrizos, Konstantinos Moulakakis, John Kakisis, Christos Manopoulos, Georgios E Stavroulakis","doi":"10.3390/diagnostics15060697","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> In recent years, more and more numerical tools have been utilized in medicine in or-der to assist the evaluation and decision-making processes for complex clinical cases. Towards this direction, Finite Element Models (FEMs) have emerged as a pivotal tool in medical research, particularly in simulating and understanding the complex fluid and structural behaviors of the circulatory system. Furthermore, this tool can be used for the calculation of certain risks regarding the function of the blood vessels. <b>Methods:</b> The current study developed a computational tool utilizing the finite element method in order to numerically evaluate stresses in aortas with abdominal aneurysms and provide the necessary data for the creation of a patient-specific digital twin of an aorta. More specifically, 12 different cases of aortas with abdominal aneurysms were examined and evaluated. <b>Results:</b> The first step was the 3D reconstruction of the aortas trans-forming the DICOM file into 3D surface models. Then, a finite element material model was developed simulating accurately the mechanical behavior of aortic walls. <b>Conclusions:</b> Through the results of these finite element analyses the values of tension, strain, and displacement were quantified and a rapid risk assessment was provided revealing that larger aneurysmatic regions elevate the risk of aortic rupture with some cases reaching an above 90% risk.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060697","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Numerical Evaluation of Abdominal Aortic Aneurysms Utilizing Finite Element Method.
Background: In recent years, more and more numerical tools have been utilized in medicine in or-der to assist the evaluation and decision-making processes for complex clinical cases. Towards this direction, Finite Element Models (FEMs) have emerged as a pivotal tool in medical research, particularly in simulating and understanding the complex fluid and structural behaviors of the circulatory system. Furthermore, this tool can be used for the calculation of certain risks regarding the function of the blood vessels. Methods: The current study developed a computational tool utilizing the finite element method in order to numerically evaluate stresses in aortas with abdominal aneurysms and provide the necessary data for the creation of a patient-specific digital twin of an aorta. More specifically, 12 different cases of aortas with abdominal aneurysms were examined and evaluated. Results: The first step was the 3D reconstruction of the aortas trans-forming the DICOM file into 3D surface models. Then, a finite element material model was developed simulating accurately the mechanical behavior of aortic walls. Conclusions: Through the results of these finite element analyses the values of tension, strain, and displacement were quantified and a rapid risk assessment was provided revealing that larger aneurysmatic regions elevate the risk of aortic rupture with some cases reaching an above 90% risk.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.