Shakhnoza Muksimova, Sabina Umirzakova, Jushkin Baltayev, Young Im Cho
{"title":"Multi-Modal Fusion and Longitudinal Analysis for Alzheimer's Disease Classification Using Deep Learning.","authors":"Shakhnoza Muksimova, Sabina Umirzakova, Jushkin Baltayev, Young Im Cho","doi":"10.3390/diagnostics15060717","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Addressing the complex diagnostic challenges of Alzheimer's disease (AD), this study introduces FusionNet, a groundbreaking framework designed to enhance AD classification through the integration of multi-modal and longitudinal imaging data. <b>Methods:</b> FusionNet synthesizes inputs from Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography (CT) scans, harnessing advanced machine learning strategies such as generative adversarial networks (GANs) for robust data augmentation, lightweight neural architectures for efficient computation, and deep metric learning for precise feature extraction. The model uniquely combines cross-sectional and temporal data, significantly enhancing diagnostic accuracy and enabling the early detection and ongoing monitoring of AD. The FusionNet architecture incorporates specialized feature extraction pathways for each imaging modality, a fusion layer to integrate diverse data sources effectively, and attention mechanisms to focus on salient diagnostic features. <b>Results:</b> Demonstrating superior performance, FusionNet achieves an accuracy of 94%, with precision and recall rates of 92% and 93%, respectively. <b>Conclusions:</b> These results underscore its potential as a highly reliable diagnostic tool for AD, facilitating early intervention and tailored treatment strategies. FusionNet's innovative approach not only improves diagnostic precision but also offers new insights into the progression of Alzheimer's disease, supporting personalized patient care and advancing our understanding of this debilitating condition.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060717","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Multi-Modal Fusion and Longitudinal Analysis for Alzheimer's Disease Classification Using Deep Learning.
Background: Addressing the complex diagnostic challenges of Alzheimer's disease (AD), this study introduces FusionNet, a groundbreaking framework designed to enhance AD classification through the integration of multi-modal and longitudinal imaging data. Methods: FusionNet synthesizes inputs from Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography (CT) scans, harnessing advanced machine learning strategies such as generative adversarial networks (GANs) for robust data augmentation, lightweight neural architectures for efficient computation, and deep metric learning for precise feature extraction. The model uniquely combines cross-sectional and temporal data, significantly enhancing diagnostic accuracy and enabling the early detection and ongoing monitoring of AD. The FusionNet architecture incorporates specialized feature extraction pathways for each imaging modality, a fusion layer to integrate diverse data sources effectively, and attention mechanisms to focus on salient diagnostic features. Results: Demonstrating superior performance, FusionNet achieves an accuracy of 94%, with precision and recall rates of 92% and 93%, respectively. Conclusions: These results underscore its potential as a highly reliable diagnostic tool for AD, facilitating early intervention and tailored treatment strategies. FusionNet's innovative approach not only improves diagnostic precision but also offers new insights into the progression of Alzheimer's disease, supporting personalized patient care and advancing our understanding of this debilitating condition.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.