IF 3 3区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Shakhnoza Muksimova, Sabina Umirzakova, Jushkin Baltayev, Young Im Cho
{"title":"Multi-Modal Fusion and Longitudinal Analysis for Alzheimer's Disease Classification Using Deep Learning.","authors":"Shakhnoza Muksimova, Sabina Umirzakova, Jushkin Baltayev, Young Im Cho","doi":"10.3390/diagnostics15060717","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Addressing the complex diagnostic challenges of Alzheimer's disease (AD), this study introduces FusionNet, a groundbreaking framework designed to enhance AD classification through the integration of multi-modal and longitudinal imaging data. <b>Methods:</b> FusionNet synthesizes inputs from Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography (CT) scans, harnessing advanced machine learning strategies such as generative adversarial networks (GANs) for robust data augmentation, lightweight neural architectures for efficient computation, and deep metric learning for precise feature extraction. The model uniquely combines cross-sectional and temporal data, significantly enhancing diagnostic accuracy and enabling the early detection and ongoing monitoring of AD. The FusionNet architecture incorporates specialized feature extraction pathways for each imaging modality, a fusion layer to integrate diverse data sources effectively, and attention mechanisms to focus on salient diagnostic features. <b>Results:</b> Demonstrating superior performance, FusionNet achieves an accuracy of 94%, with precision and recall rates of 92% and 93%, respectively. <b>Conclusions:</b> These results underscore its potential as a highly reliable diagnostic tool for AD, facilitating early intervention and tailored treatment strategies. FusionNet's innovative approach not only improves diagnostic precision but also offers new insights into the progression of Alzheimer's disease, supporting personalized patient care and advancing our understanding of this debilitating condition.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060717","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:为了应对阿尔茨海默病(AD)复杂的诊断难题,本研究引入了 FusionNet,这是一个开创性的框架,旨在通过整合多模态和纵向成像数据来增强 AD 分类。研究方法FusionNet 综合了来自磁共振成像(MRI)、正电子发射断层扫描(PET)和计算机断层扫描(CT)扫描的输入数据,利用了先进的机器学习策略,如生成式对抗网络(GANs)用于稳健的数据增强、轻量级神经架构用于高效计算、深度度量学习用于精确特征提取。该模型将横截面数据和时间数据独特地结合在一起,大大提高了诊断的准确性,实现了对注意力缺失症的早期检测和持续监测。FusionNet 架构为每种成像模式整合了专门的特征提取途径,融合层可有效整合不同的数据源,注意力机制可聚焦于突出的诊断特征。结果:FusionNet 的准确率达到 94%,精确率和召回率分别为 92% 和 93%,表现出卓越的性能。结论这些结果凸显了其作为高度可靠的注意力缺失症诊断工具的潜力,有助于早期干预和量身定制的治疗策略。FusionNet 的创新方法不仅提高了诊断的准确性,还为阿尔茨海默氏症的进展提供了新的见解,支持了个性化的患者护理,促进了我们对这种使人衰弱的疾病的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Modal Fusion and Longitudinal Analysis for Alzheimer's Disease Classification Using Deep Learning.

Background: Addressing the complex diagnostic challenges of Alzheimer's disease (AD), this study introduces FusionNet, a groundbreaking framework designed to enhance AD classification through the integration of multi-modal and longitudinal imaging data. Methods: FusionNet synthesizes inputs from Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography (CT) scans, harnessing advanced machine learning strategies such as generative adversarial networks (GANs) for robust data augmentation, lightweight neural architectures for efficient computation, and deep metric learning for precise feature extraction. The model uniquely combines cross-sectional and temporal data, significantly enhancing diagnostic accuracy and enabling the early detection and ongoing monitoring of AD. The FusionNet architecture incorporates specialized feature extraction pathways for each imaging modality, a fusion layer to integrate diverse data sources effectively, and attention mechanisms to focus on salient diagnostic features. Results: Demonstrating superior performance, FusionNet achieves an accuracy of 94%, with precision and recall rates of 92% and 93%, respectively. Conclusions: These results underscore its potential as a highly reliable diagnostic tool for AD, facilitating early intervention and tailored treatment strategies. FusionNet's innovative approach not only improves diagnostic precision but also offers new insights into the progression of Alzheimer's disease, supporting personalized patient care and advancing our understanding of this debilitating condition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostics
Diagnostics Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍: Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信