噪声和动态突触作为脉冲神经网络的优化工具。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-02-21 DOI:10.3390/e27030219
Yana Garipova, Shogo Yonekura, Yasuo Kuniyoshi
{"title":"噪声和动态突触作为脉冲神经网络的优化工具。","authors":"Yana Garipova, Shogo Yonekura, Yasuo Kuniyoshi","doi":"10.3390/e27030219","DOIUrl":null,"url":null,"abstract":"<p><p>Standard ANNs lack flexibility when handling corrupted input due to their fixed structure. In this paper, a spiking neural network utilizes biological temporal coding features in the form of noise-induced stochastic resonance and dynamical synapses to increase the model's performance when its parameters are not optimized for a given input. Using the analog XOR task as a simplified convolutional neural network model, this paper demonstrates two key results: (1) SNNs solve the problem that is linearly inseparable in ANN with fewer neurons, and (2) in leaky SNNs, the addition of noise and dynamical synapses compensate for non-optimal parameters, achieving near-optimal results for weaker inputs.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941097/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noise and Dynamical Synapses as Optimization Tools for Spiking Neural Networks.\",\"authors\":\"Yana Garipova, Shogo Yonekura, Yasuo Kuniyoshi\",\"doi\":\"10.3390/e27030219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard ANNs lack flexibility when handling corrupted input due to their fixed structure. In this paper, a spiking neural network utilizes biological temporal coding features in the form of noise-induced stochastic resonance and dynamical synapses to increase the model's performance when its parameters are not optimized for a given input. Using the analog XOR task as a simplified convolutional neural network model, this paper demonstrates two key results: (1) SNNs solve the problem that is linearly inseparable in ANN with fewer neurons, and (2) in leaky SNNs, the addition of noise and dynamical synapses compensate for non-optimal parameters, achieving near-optimal results for weaker inputs.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941097/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27030219\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27030219","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

标准人工神经网络由于其固定结构,在处理损坏输入时缺乏灵活性。在本文中,尖峰神经网络以噪声诱导的随机共振和动态突触的形式利用生物时间编码特征来提高模型在参数未针对给定输入进行优化时的性能。本文将模拟异或任务作为简化的卷积神经网络模型,展示了两个关键结果:(1)snn解决了神经元较少的ANN中线性不可分的问题;(2)在泄漏snn中,噪声和动态突触的加入补偿了非最优参数,在较弱输入下获得了接近最优的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise and Dynamical Synapses as Optimization Tools for Spiking Neural Networks.

Standard ANNs lack flexibility when handling corrupted input due to their fixed structure. In this paper, a spiking neural network utilizes biological temporal coding features in the form of noise-induced stochastic resonance and dynamical synapses to increase the model's performance when its parameters are not optimized for a given input. Using the analog XOR task as a simplified convolutional neural network model, this paper demonstrates two key results: (1) SNNs solve the problem that is linearly inseparable in ANN with fewer neurons, and (2) in leaky SNNs, the addition of noise and dynamical synapses compensate for non-optimal parameters, achieving near-optimal results for weaker inputs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信