Alireza Hayati, Mohammad Reza Abdol Homayuni, Reza Sadeghi, Hassan Asadigandomani, Mohammad Dashtkoohi, Sajad Eslami, Mohammad Soleimani
{"title":"推进糖尿病视网膜病变筛查:人工智能和光学相干断层扫描血管造影创新的系统综述。","authors":"Alireza Hayati, Mohammad Reza Abdol Homayuni, Reza Sadeghi, Hassan Asadigandomani, Mohammad Dashtkoohi, Sajad Eslami, Mohammad Soleimani","doi":"10.3390/diagnostics15060737","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Diabetic retinopathy (DR) remains a leading cause of preventable blindness, with its global prevalence projected to rise sharply as diabetes incidence increases. Early detection and timely management are critical to reducing DR-related vision loss. Optical Coherence Tomography Angiography (OCTA) now enables non-invasive, layer-specific visualization of the retinal vasculature, facilitating more precise identification of early microvascular changes. Concurrently, advancements in artificial intelligence (AI), particularly deep learning (DL) architectures such as convolutional neural networks (CNNs), attention-based models, and Vision Transformers (ViTs), have revolutionized image analysis. These AI-driven tools substantially enhance the sensitivity, specificity, and interpretability of DR screening. <b>Methods</b>: A systematic review of PubMed, Scopus, WOS, and Embase databases, including quality assessment of published studies, investigating the result of different AI algorithms with OCTA parameters in DR patients was conducted. The variables of interest comprised training databases, type of image, imaging modality, number of images, outcomes, algorithm/model used, and performance metrics. <b>Results</b>: A total of 32 studies were included in this systematic review. In comparison to conventional ML techniques, our results indicated that DL algorithms significantly improve the accuracy, sensitivity, and specificity of DR screening. Multi-branch CNNs, ensemble architectures, and ViTs were among the sophisticated models with remarkable performance metrics. Several studies reported that accuracy and area under the curve (AUC) values were higher than 99%. <b>Conclusions</b>: This systematic review underscores the transformative potential of integrating advanced DL and machine learning (ML) algorithms with OCTA imaging for DR screening. By synthesizing evidence from 32 studies, we highlight the unique capabilities of AI-OCTA systems in improving diagnostic accuracy, enabling early detection, and streamlining clinical workflows. These advancements promise to enhance patient management by facilitating timely interventions and reducing the burden of DR-related vision loss. Furthermore, this review provides critical recommendations for clinical practice, emphasizing the need for robust validation, ethical considerations, and equitable implementation to ensure the widespread adoption of AI-OCTA technologies. Future research should focus on multicenter studies, multimodal integration, and real-world validation to maximize the clinical impact of these innovative tools.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advancing Diabetic Retinopathy Screening: A Systematic Review of Artificial Intelligence and Optical Coherence Tomography Angiography Innovations.\",\"authors\":\"Alireza Hayati, Mohammad Reza Abdol Homayuni, Reza Sadeghi, Hassan Asadigandomani, Mohammad Dashtkoohi, Sajad Eslami, Mohammad Soleimani\",\"doi\":\"10.3390/diagnostics15060737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Diabetic retinopathy (DR) remains a leading cause of preventable blindness, with its global prevalence projected to rise sharply as diabetes incidence increases. Early detection and timely management are critical to reducing DR-related vision loss. Optical Coherence Tomography Angiography (OCTA) now enables non-invasive, layer-specific visualization of the retinal vasculature, facilitating more precise identification of early microvascular changes. Concurrently, advancements in artificial intelligence (AI), particularly deep learning (DL) architectures such as convolutional neural networks (CNNs), attention-based models, and Vision Transformers (ViTs), have revolutionized image analysis. These AI-driven tools substantially enhance the sensitivity, specificity, and interpretability of DR screening. <b>Methods</b>: A systematic review of PubMed, Scopus, WOS, and Embase databases, including quality assessment of published studies, investigating the result of different AI algorithms with OCTA parameters in DR patients was conducted. The variables of interest comprised training databases, type of image, imaging modality, number of images, outcomes, algorithm/model used, and performance metrics. <b>Results</b>: A total of 32 studies were included in this systematic review. In comparison to conventional ML techniques, our results indicated that DL algorithms significantly improve the accuracy, sensitivity, and specificity of DR screening. Multi-branch CNNs, ensemble architectures, and ViTs were among the sophisticated models with remarkable performance metrics. Several studies reported that accuracy and area under the curve (AUC) values were higher than 99%. <b>Conclusions</b>: This systematic review underscores the transformative potential of integrating advanced DL and machine learning (ML) algorithms with OCTA imaging for DR screening. By synthesizing evidence from 32 studies, we highlight the unique capabilities of AI-OCTA systems in improving diagnostic accuracy, enabling early detection, and streamlining clinical workflows. These advancements promise to enhance patient management by facilitating timely interventions and reducing the burden of DR-related vision loss. Furthermore, this review provides critical recommendations for clinical practice, emphasizing the need for robust validation, ethical considerations, and equitable implementation to ensure the widespread adoption of AI-OCTA technologies. Future research should focus on multicenter studies, multimodal integration, and real-world validation to maximize the clinical impact of these innovative tools.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11941001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15060737\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15060737","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Advancing Diabetic Retinopathy Screening: A Systematic Review of Artificial Intelligence and Optical Coherence Tomography Angiography Innovations.
Background/Objectives: Diabetic retinopathy (DR) remains a leading cause of preventable blindness, with its global prevalence projected to rise sharply as diabetes incidence increases. Early detection and timely management are critical to reducing DR-related vision loss. Optical Coherence Tomography Angiography (OCTA) now enables non-invasive, layer-specific visualization of the retinal vasculature, facilitating more precise identification of early microvascular changes. Concurrently, advancements in artificial intelligence (AI), particularly deep learning (DL) architectures such as convolutional neural networks (CNNs), attention-based models, and Vision Transformers (ViTs), have revolutionized image analysis. These AI-driven tools substantially enhance the sensitivity, specificity, and interpretability of DR screening. Methods: A systematic review of PubMed, Scopus, WOS, and Embase databases, including quality assessment of published studies, investigating the result of different AI algorithms with OCTA parameters in DR patients was conducted. The variables of interest comprised training databases, type of image, imaging modality, number of images, outcomes, algorithm/model used, and performance metrics. Results: A total of 32 studies were included in this systematic review. In comparison to conventional ML techniques, our results indicated that DL algorithms significantly improve the accuracy, sensitivity, and specificity of DR screening. Multi-branch CNNs, ensemble architectures, and ViTs were among the sophisticated models with remarkable performance metrics. Several studies reported that accuracy and area under the curve (AUC) values were higher than 99%. Conclusions: This systematic review underscores the transformative potential of integrating advanced DL and machine learning (ML) algorithms with OCTA imaging for DR screening. By synthesizing evidence from 32 studies, we highlight the unique capabilities of AI-OCTA systems in improving diagnostic accuracy, enabling early detection, and streamlining clinical workflows. These advancements promise to enhance patient management by facilitating timely interventions and reducing the burden of DR-related vision loss. Furthermore, this review provides critical recommendations for clinical practice, emphasizing the need for robust validation, ethical considerations, and equitable implementation to ensure the widespread adoption of AI-OCTA technologies. Future research should focus on multicenter studies, multimodal integration, and real-world validation to maximize the clinical impact of these innovative tools.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.