{"title":"小儿麻痹症改善大鼠淀粉样蛋白β诱导的脑网络紊乱:电生理和行为研究。","authors":"Karen Simonyan, Lilit Darbinyan, Lilia Hambardzumyan, Larisa Manukyan, Vergine Chavushyan","doi":"10.1186/s12906-024-04715-8","DOIUrl":null,"url":null,"abstract":"<p><p>Synaptic failure in specific cholinergic networks in rat brains has been implicated in amyloid β-induced neurodegeneration. Teucrium polium is a promising candidate for drug development against Alzheimer's disease (AD) and similar disorders. However, the protective effect of Teucrium polium against amyloid β-induced impairment of short-term synaptic plasticity is still poorly understood. In this study, we used in vivo extracellular single-unit recordings to investigate the preventive efficacy of Teucrium polium on Aβ(25-35)-induced aberrant neuronal activity in the hippocampus and basolateral amygdala of rats, in response to high-frequency stimulation of the cholinergic nucleus basalis magnocellularis (NBM). After 12 weeks of intracerebroventricular administration of Aβ(25-35), alterations such as decreased excitatory responses and increased inhibitory synaptic activity were observed in the NBM-hippocampus and NBM-basolateral amygdala cholinergic circuits. Treatment with Teucrium polium improved the balance of excitatory and inhibitory responses by modulating synaptic transmission strength and restoring short-term plasticity. Acute injection of a therapeutic dose of Teucrium temporarily inhibited spiking activity in single NBM neurons. Open field tests revealed that amyloid-injected rats displayed anxiety and reduced exploratory drive. Treatment with Teucrium polium improved these behaviors, reducing anxiety and increasing exploration. Teucrium polium mitigated amyloid β-induced alterations in cholinergic circuits by enhancing the adaptive capacity of short-term synaptic plasticity. These findings suggest that Teucrium polium could serve as a preventive strategy to delay the progression of cholinergic neurodegeneration.</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"116"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Teucrium Polium ameliorates amyloid β-induced brain network disorders in rats: electrophysiological and behavioral studies.\",\"authors\":\"Karen Simonyan, Lilit Darbinyan, Lilia Hambardzumyan, Larisa Manukyan, Vergine Chavushyan\",\"doi\":\"10.1186/s12906-024-04715-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synaptic failure in specific cholinergic networks in rat brains has been implicated in amyloid β-induced neurodegeneration. Teucrium polium is a promising candidate for drug development against Alzheimer's disease (AD) and similar disorders. However, the protective effect of Teucrium polium against amyloid β-induced impairment of short-term synaptic plasticity is still poorly understood. In this study, we used in vivo extracellular single-unit recordings to investigate the preventive efficacy of Teucrium polium on Aβ(25-35)-induced aberrant neuronal activity in the hippocampus and basolateral amygdala of rats, in response to high-frequency stimulation of the cholinergic nucleus basalis magnocellularis (NBM). After 12 weeks of intracerebroventricular administration of Aβ(25-35), alterations such as decreased excitatory responses and increased inhibitory synaptic activity were observed in the NBM-hippocampus and NBM-basolateral amygdala cholinergic circuits. Treatment with Teucrium polium improved the balance of excitatory and inhibitory responses by modulating synaptic transmission strength and restoring short-term plasticity. Acute injection of a therapeutic dose of Teucrium temporarily inhibited spiking activity in single NBM neurons. Open field tests revealed that amyloid-injected rats displayed anxiety and reduced exploratory drive. Treatment with Teucrium polium improved these behaviors, reducing anxiety and increasing exploration. Teucrium polium mitigated amyloid β-induced alterations in cholinergic circuits by enhancing the adaptive capacity of short-term synaptic plasticity. These findings suggest that Teucrium polium could serve as a preventive strategy to delay the progression of cholinergic neurodegeneration.</p>\",\"PeriodicalId\":9128,\"journal\":{\"name\":\"BMC Complementary Medicine and Therapies\",\"volume\":\"25 1\",\"pages\":\"116\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Complementary Medicine and Therapies\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12906-024-04715-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-024-04715-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Teucrium Polium ameliorates amyloid β-induced brain network disorders in rats: electrophysiological and behavioral studies.
Synaptic failure in specific cholinergic networks in rat brains has been implicated in amyloid β-induced neurodegeneration. Teucrium polium is a promising candidate for drug development against Alzheimer's disease (AD) and similar disorders. However, the protective effect of Teucrium polium against amyloid β-induced impairment of short-term synaptic plasticity is still poorly understood. In this study, we used in vivo extracellular single-unit recordings to investigate the preventive efficacy of Teucrium polium on Aβ(25-35)-induced aberrant neuronal activity in the hippocampus and basolateral amygdala of rats, in response to high-frequency stimulation of the cholinergic nucleus basalis magnocellularis (NBM). After 12 weeks of intracerebroventricular administration of Aβ(25-35), alterations such as decreased excitatory responses and increased inhibitory synaptic activity were observed in the NBM-hippocampus and NBM-basolateral amygdala cholinergic circuits. Treatment with Teucrium polium improved the balance of excitatory and inhibitory responses by modulating synaptic transmission strength and restoring short-term plasticity. Acute injection of a therapeutic dose of Teucrium temporarily inhibited spiking activity in single NBM neurons. Open field tests revealed that amyloid-injected rats displayed anxiety and reduced exploratory drive. Treatment with Teucrium polium improved these behaviors, reducing anxiety and increasing exploration. Teucrium polium mitigated amyloid β-induced alterations in cholinergic circuits by enhancing the adaptive capacity of short-term synaptic plasticity. These findings suggest that Teucrium polium could serve as a preventive strategy to delay the progression of cholinergic neurodegeneration.