Hidetoshi Ishida, Yu Sasaki, Teppei Shibata, Hiroshi Sasaki, Bhavana Chhunchha, Dhirendra P Singh, Eri Kubo
{"title":"局部注射n -乙酰半胱氨酸和n -乙酰半胱氨酸酰胺可阻止小鼠老年性晶状体混浊。","authors":"Hidetoshi Ishida, Yu Sasaki, Teppei Shibata, Hiroshi Sasaki, Bhavana Chhunchha, Dhirendra P Singh, Eri Kubo","doi":"10.3390/biom15030442","DOIUrl":null,"url":null,"abstract":"<p><p>Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (<i>Txnip</i>) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H<sub>2</sub>O<sub>2</sub>-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced <i>Txnip</i> and increased thioredoxin (<i>Trx</i>) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940285/pdf/","citationCount":"0","resultStr":"{\"title\":\"Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice.\",\"authors\":\"Hidetoshi Ishida, Yu Sasaki, Teppei Shibata, Hiroshi Sasaki, Bhavana Chhunchha, Dhirendra P Singh, Eri Kubo\",\"doi\":\"10.3390/biom15030442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (<i>Txnip</i>) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H<sub>2</sub>O<sub>2</sub>-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced <i>Txnip</i> and increased thioredoxin (<i>Trx</i>) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940285/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15030442\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030442","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Topical Instillation of N-Acetylcysteine and N-Acetylcysteine Amide Impedes Age-Related Lens Opacity in Mice.
Cataracts, the leading cause of blindness globally, are caused by oxidative stress and inflammation, which disrupt lens transparency due to increased accumulation of reactive oxygen species (ROS) as well as protein and DNA damage during aging. Using in vitro, ex vivo, and in vivo models, we determined the protective efficacy of N-acetylcysteine amide (NACA) against oxidative stress-induced and aging-induced cataractogenesis. We found that lens epithelial cells exposed to the oxidative stress inducers hydrogen peroxide (H2O2) or tert-butyl hydroperoxide showed significant ROS accumulation and reduced cellular viability. These effects were inhibited by NACA via the suppression of ROS and thioredoxin-interacting protein (Txnip) expression, a regulator of oxidative stress-related cellular damage and inflammation. In ex vivo lens experiments, NACA significantly reduced H2O2-induced lens opacity and preserved lens integrity. Similarly to NACA-treated lenses ex vivo, the integrity and opacity of aged mouse lenses, when topically instilled with NACA, were preserved and reduced, respectively, and are directly related to reduced Txnip and increased thioredoxin (Trx) expression levels. Overall, our findings demonstrated the protective ability of NACA to abate aberrant redox-active pathways, particularly the ROS/TRX/TXNIP axis, thereby preventing cataractogenesis and preserving eye lens integrity and ultimately impeding aging-related cataracts.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.