组织驻留和浸润性免疫细胞:它们对1型糖尿病β细胞死亡的影响

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-19 DOI:10.3390/biom15030441
Sophie L Walker, Pia Leete, Joanne Boldison
{"title":"组织驻留和浸润性免疫细胞:它们对1型糖尿病β细胞死亡的影响","authors":"Sophie L Walker, Pia Leete, Joanne Boldison","doi":"10.3390/biom15030441","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an organ-specific autoimmune disease that results in the selective loss of pancreatic beta cells and an eventual deficit in insulin production to maintain glucose homeostasis. It is now increasingly accepted that this dynamic disease process is multifactorial; involves a variety of immune cells which contribute to an inflamed pancreatic microenvironment; and that the condition is heterogenous, resulting in variable rates of subsequent beta cell damage. In this review, we will explore the current understanding of the cellular interactions between both resident and infiltrating immune cells within the pancreatic environment, highlighting key mechanisms which may promote the beta cell destruction and islet damage associated with T1D.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tissue Resident and Infiltrating Immune Cells: Their Influence on the Demise of Beta Cells in Type 1 Diabetes.\",\"authors\":\"Sophie L Walker, Pia Leete, Joanne Boldison\",\"doi\":\"10.3390/biom15030441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes (T1D) is an organ-specific autoimmune disease that results in the selective loss of pancreatic beta cells and an eventual deficit in insulin production to maintain glucose homeostasis. It is now increasingly accepted that this dynamic disease process is multifactorial; involves a variety of immune cells which contribute to an inflamed pancreatic microenvironment; and that the condition is heterogenous, resulting in variable rates of subsequent beta cell damage. In this review, we will explore the current understanding of the cellular interactions between both resident and infiltrating immune cells within the pancreatic environment, highlighting key mechanisms which may promote the beta cell destruction and islet damage associated with T1D.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15030441\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030441","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

1型糖尿病(T1D)是一种器官特异性自身免疫性疾病,可导致胰腺β细胞的选择性损失,并最终导致胰岛素分泌不足,以维持葡萄糖稳态。现在越来越多的人认为这种动态的疾病过程是多因素的;涉及多种免疫细胞,导致胰腺微环境发炎;这种情况是异质性的,导致随后的细胞损伤率不同。在这篇综述中,我们将探讨目前对胰腺环境中常驻免疫细胞和浸润免疫细胞之间细胞相互作用的理解,强调可能促进与T1D相关的β细胞破坏和胰岛损伤的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tissue Resident and Infiltrating Immune Cells: Their Influence on the Demise of Beta Cells in Type 1 Diabetes.

Type 1 diabetes (T1D) is an organ-specific autoimmune disease that results in the selective loss of pancreatic beta cells and an eventual deficit in insulin production to maintain glucose homeostasis. It is now increasingly accepted that this dynamic disease process is multifactorial; involves a variety of immune cells which contribute to an inflamed pancreatic microenvironment; and that the condition is heterogenous, resulting in variable rates of subsequent beta cell damage. In this review, we will explore the current understanding of the cellular interactions between both resident and infiltrating immune cells within the pancreatic environment, highlighting key mechanisms which may promote the beta cell destruction and islet damage associated with T1D.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信