植物源性外泌体的多方面治疗潜力:免疫调节、抗癌、抗衰老、抗黑素生成、解毒和药物传递。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-10 DOI:10.3390/biom15030394
Arzu Zeynep Karabay, Jaleh Barar, Yalda Hekmatshoar, Yalda Rahbar Saadat
{"title":"植物源性外泌体的多方面治疗潜力:免疫调节、抗癌、抗衰老、抗黑素生成、解毒和药物传递。","authors":"Arzu Zeynep Karabay, Jaleh Barar, Yalda Hekmatshoar, Yalda Rahbar Saadat","doi":"10.3390/biom15030394","DOIUrl":null,"url":null,"abstract":"<p><p>Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940522/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery.\",\"authors\":\"Arzu Zeynep Karabay, Jaleh Barar, Yalda Hekmatshoar, Yalda Rahbar Saadat\",\"doi\":\"10.3390/biom15030394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940522/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15030394\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030394","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数真核和原核细胞都有可能分泌一组结构/膜结合细胞器,统称为细胞外囊泡(EVs),它为产生/接收细胞提供了几个优势。本文综述了植物来源的电动汽车,重点介绍了它们的健康促进潜力和作为治疗剂的可能用途。本文综述了植物源性细胞外囊泡的基本生物学作用,包括免疫调节、抗癌活性、抗化学毒性和病原体、抗衰老、抗黑色素生成和抗关节炎作用,以及正在进行的临床研究。有证据表明,植物源性电动汽车的内容物通过转移mirna和其他成分来调节重要的信号通路,从而发挥其有益的特性。综上所述,这些数据表明,植物源性电动汽车可以用作营养化合物和治疗剂,如药物载体。然而,这一新兴研究领域需要进一步的体外/体内研究和临床试验,以确定ev在治疗各种疾病方面的积极健康效应的确切潜在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multifaceted Therapeutic Potential of Plant-Derived Exosomes: Immunomodulation, Anticancer, Anti-Aging, Anti-Melanogenesis, Detoxification, and Drug Delivery.

Most eukaryotic and prokaryotic cells have the potential to secrete a group of structures/membrane-bound organelles, collectively referred to as extracellular vesicles (EVs), which offer several advantages to producer/receiver cells. This review provides an overview of EVs from plant sources with emphasis on their health-promoting potential and possible use as therapeutic agents. This review highlights the essential biological effects of plant-derived extracellular vesicles, including immune modulation, anticancer activities, protection against chemical toxicity and pathogens, as well as anti-aging, anti-melanogenesis, and anti-arthritic effects, along with ongoing clinical studies. Evidence revealed that plant-derived EVs' contents exert their beneficial properties through regulating important signaling pathways by transferring miRNAs and other components. Taken all together, the data proposed that plant-derived EVs can be utilized as nutritional compounds and therapeutic agents, such as drug carriers. However, this emerging research area requires further in vitro/in vivo studies and clinical trials to determine the exact underlying mechanisms of EVs' positive health effects in treating various diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信