人工智能在超声辅助医学诊断中的应用进展。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Li Yan, Qing Li, Kang Fu, Xiaodong Zhou, Kai Zhang
{"title":"人工智能在超声辅助医学诊断中的应用进展。","authors":"Li Yan, Qing Li, Kang Fu, Xiaodong Zhou, Kai Zhang","doi":"10.3390/bioengineering12030288","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into ultrasound medicine has revolutionized medical imaging, enhancing diagnostic accuracy and clinical workflows. This review focuses on the applications, challenges, and future directions of AI technologies, particularly machine learning (ML) and its subset, deep learning (DL), in ultrasound diagnostics. By leveraging advanced algorithms such as convolutional neural networks (CNNs), AI has significantly improved image acquisition, quality assessment, and objective disease diagnosis. AI-driven solutions now facilitate automated image analysis, intelligent diagnostic assistance, and medical education, enabling precise lesion detection across various organs while reducing physician workload. AI's error detection capabilities further enhance diagnostic accuracy. Looking ahead, the integration of AI with ultrasound is expected to deepen, promoting trends in standardization, personalized treatment, and intelligent healthcare, particularly in underserved areas. Despite its potential, comprehensive assessments of AI's diagnostic accuracy and ethical implications remain limited, necessitating rigorous evaluations to ensure effectiveness in clinical practice. This review provides a systematic evaluation of AI technologies in ultrasound medicine, highlighting their transformative potential to improve global healthcare outcomes.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis.\",\"authors\":\"Li Yan, Qing Li, Kang Fu, Xiaodong Zhou, Kai Zhang\",\"doi\":\"10.3390/bioengineering12030288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The integration of artificial intelligence (AI) into ultrasound medicine has revolutionized medical imaging, enhancing diagnostic accuracy and clinical workflows. This review focuses on the applications, challenges, and future directions of AI technologies, particularly machine learning (ML) and its subset, deep learning (DL), in ultrasound diagnostics. By leveraging advanced algorithms such as convolutional neural networks (CNNs), AI has significantly improved image acquisition, quality assessment, and objective disease diagnosis. AI-driven solutions now facilitate automated image analysis, intelligent diagnostic assistance, and medical education, enabling precise lesion detection across various organs while reducing physician workload. AI's error detection capabilities further enhance diagnostic accuracy. Looking ahead, the integration of AI with ultrasound is expected to deepen, promoting trends in standardization, personalized treatment, and intelligent healthcare, particularly in underserved areas. Despite its potential, comprehensive assessments of AI's diagnostic accuracy and ethical implications remain limited, necessitating rigorous evaluations to ensure effectiveness in clinical practice. This review provides a systematic evaluation of AI technologies in ultrasound medicine, highlighting their transformative potential to improve global healthcare outcomes.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12030288\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)与超声医学的整合彻底改变了医学成像,提高了诊断准确性和临床工作流程。本文重点介绍了人工智能技术的应用、挑战和未来方向,特别是机器学习(ML)及其子集深度学习(DL)在超声诊断中的应用。通过利用卷积神经网络(cnn)等先进算法,人工智能显著改善了图像采集、质量评估和客观疾病诊断。现在,人工智能驱动的解决方案促进了自动图像分析、智能诊断辅助和医学教育,在减少医生工作量的同时,实现了跨各个器官的精确病变检测。人工智能的错误检测能力进一步提高了诊断的准确性。展望未来,人工智能与超声的融合有望深化,推动标准化、个性化治疗和智能医疗的趋势,特别是在服务不足的地区。尽管人工智能具有潜力,但对其诊断准确性和伦理影响的全面评估仍然有限,需要进行严格的评估以确保临床实践的有效性。本综述对超声医学中的人工智能技术进行了系统评估,强调了它们改善全球医疗保健结果的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis.

The integration of artificial intelligence (AI) into ultrasound medicine has revolutionized medical imaging, enhancing diagnostic accuracy and clinical workflows. This review focuses on the applications, challenges, and future directions of AI technologies, particularly machine learning (ML) and its subset, deep learning (DL), in ultrasound diagnostics. By leveraging advanced algorithms such as convolutional neural networks (CNNs), AI has significantly improved image acquisition, quality assessment, and objective disease diagnosis. AI-driven solutions now facilitate automated image analysis, intelligent diagnostic assistance, and medical education, enabling precise lesion detection across various organs while reducing physician workload. AI's error detection capabilities further enhance diagnostic accuracy. Looking ahead, the integration of AI with ultrasound is expected to deepen, promoting trends in standardization, personalized treatment, and intelligent healthcare, particularly in underserved areas. Despite its potential, comprehensive assessments of AI's diagnostic accuracy and ethical implications remain limited, necessitating rigorous evaluations to ensure effectiveness in clinical practice. This review provides a systematic evaluation of AI technologies in ultrasound medicine, highlighting their transformative potential to improve global healthcare outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信