使用流体-离散相体积模型预测Respimat®软雾吸入器的雾化过程。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Ted Sperry, Yu Feng
{"title":"使用流体-离散相体积模型预测Respimat®软雾吸入器的雾化过程。","authors":"Ted Sperry, Yu Feng","doi":"10.3390/bioengineering12030264","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the atomization process in Respimat<sup>®</sup> Soft Mist<sup>TM</sup> Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of the Atomization Process in Respimat<sup>®</sup> Soft Mist<sup>TM</sup> Inhalers Using a Volume of Fluid-to-Discrete Phase Model.\",\"authors\":\"Ted Sperry, Yu Feng\",\"doi\":\"10.3390/bioengineering12030264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the atomization process in Respimat<sup>®</sup> Soft Mist<sup>TM</sup> Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12030264\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了Respimat®软雾吸入器(SMIs)的雾化过程,使用经过验证的流体体积(VOF)到离散相模型(DPM)来模拟从碰撞液体射流到雾化液滴的转变。系统地改变了碰撞射流入口速度、表面张力和液体粘度等关键参数,分析了它们对雾化的影响,即雾化液滴尺寸分布。VOF-to-DPM模拟结果表明,较高的射流入口速度增强了韧带断裂,产生更细、更均匀的液滴,同时降低了总雾化液滴质量。在碰撞射流雾化中,表面张力与雾化性能之间的关系不是单调的。降低表面张力在雾化过程中起着复杂的双重作用。一方面,较低的表面张力增加了液体射流破裂成液片的可能性,导致在相同气流条件和剪切力下形成较小的韧带。这增加了产生更多二次飞沫的可能性。另一方面,表面张力的降低也使液体表面形状不稳定,在表面张力为主导力的情况下,减少了精细、高球形度液滴的形成。粘度也通过复杂的机制影响雾化,低粘度降低了对韧带断裂的阻力,但促进了液滴的相互作用和聚结,而高粘度抑制了韧带断裂,产生更大的液滴,降低了雾化效率。经过验证的VOF-to-DPM框架为提高吸入疗法的性能和效率提供了关键的见解。未来的工作将包括喷嘴几何形状、射流撞击角度和表面活性剂效应,以更好地了解和优化SMIs的雾化过程,重点是实现理想的液滴大小分布和发射剂量,以提高人体呼吸系统的药物输送效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the Atomization Process in Respimat® Soft MistTM Inhalers Using a Volume of Fluid-to-Discrete Phase Model.

This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信