使用雷达信号的非接触式血压监测:双阶段深度学习网络。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Pengfei Wang, Minghao Yang, Xiaoxue Zhang, Jianqi Wang, Cong Wang, Hongbo Jia
{"title":"使用雷达信号的非接触式血压监测:双阶段深度学习网络。","authors":"Pengfei Wang, Minghao Yang, Xiaoxue Zhang, Jianqi Wang, Cong Wang, Hongbo Jia","doi":"10.3390/bioengineering12030252","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 ± 5.15 mmHg, DBP: -0.26 ± 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939564/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-Contact Blood Pressure Monitoring Using Radar Signals: A Dual-Stage Deep Learning Network.\",\"authors\":\"Pengfei Wang, Minghao Yang, Xiaoxue Zhang, Jianqi Wang, Cong Wang, Hongbo Jia\",\"doi\":\"10.3390/bioengineering12030252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 ± 5.15 mmHg, DBP: -0.26 ± 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939564/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12030252\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

新兴的雷达传感技术通过消除直接的皮肤接触,正在彻底改变心血管监测。这种方法通过电磁波反射捕捉生命体征,实现非接触式血压(BP)跟踪,同时保持用户的舒适性和隐私性。我们提出了一个分层神经框架,该框架将空间和时间特征学习协同用于雷达驱动的非接触式BP监测。通过采用先进的预处理技术,该系统捕捉到细微的胸壁振动及其二阶导数,将双通道输入输入到一个分层神经网络中。具体而言,第一阶段部署卷积深度可调的轻量级剩余块,从微运动特征中提取空间特征,第二阶段采用变压器架构,建立这些空间特征与BP周期性动态变化之间的相关性。利用收缩压(SBP)和舒张压(DBP)之间的内在联系,第二阶段的早期估计用于扩展第二阶段网络的特征集,提高其预测能力。验证达到了临床可接受的误差(收缩压:-1.09±5.15 mmHg,舒张压:-0.26±4.35 mmHg)。值得注意的是,这种高度的准确性,加上以2秒间隔估计血压的能力,非常接近实时的心跳监测,代表了非接触式血压监测的关键突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Contact Blood Pressure Monitoring Using Radar Signals: A Dual-Stage Deep Learning Network.

Emerging radar sensing technology is revolutionizing cardiovascular monitoring by eliminating direct skin contact. This approach captures vital signs through electromagnetic wave reflections, enabling contactless blood pressure (BP) tracking while maintaining user comfort and privacy. We present a hierarchical neural framework that synergizes spatial and temporal feature learning for radar-driven, contactless BP monitoring. By employing advanced preprocessing techniques, the system captures subtle chest wall vibrations and their second-order derivatives, feeding dual-channel inputs into a hierarchical neural network. Specifically, Stage 1 deploys convolutional depth-adjustable lightweight residual blocks to extract spatial features from micro-motion characteristics, while Stage 2 employs a transformer architecture to establish correlations between these spatial features and BP periodic dynamic variations. Drawing on the intrinsic link between systolic (SBP) and diastolic (DBP) blood pressures, early estimates from Stage 2 are used to expand the feature set for the second-stage network, boosting its predictive power. Validation achieved clinically acceptable errors (SBP: -1.09 ± 5.15 mmHg, DBP: -0.26 ± 4.35 mmHg). Notably, this high degree of accuracy, combined with the ability to estimate BP at 2 s intervals, closely approximates real-time, beat-to-beat monitoring, representing a pivotal breakthrough in non-contact BP monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信