使用材料喷射的医疗3D打印:技术概述,医疗应用和挑战。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B Burch, Prashanth Ravi
{"title":"使用材料喷射的医疗3D打印:技术概述,医疗应用和挑战。","authors":"Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B Burch, Prashanth Ravi","doi":"10.3390/bioengineering12030249","DOIUrl":null,"url":null,"abstract":"<p><p>Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939548/pdf/","citationCount":"0","resultStr":"{\"title\":\"Medical 3D Printing Using Material Jetting: Technology Overview, Medical Applications, and Challenges.\",\"authors\":\"Shivum Chokshi, Raghav Gangatirkar, Anish Kandi, Maria DeLeonibus, Mohamed Kamel, Seetharam Chadalavada, Rajul Gupta, Harshitha Munigala, Karthik Tappa, Shayne Kondor, Michael B Burch, Prashanth Ravi\",\"doi\":\"10.3390/bioengineering12030249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939548/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12030249\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030249","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

材料喷射(MJT) 3D打印(3DP)是一种特殊的技术,它可以沉积光固化的材料液滴和彩色墨水,逐层制造物体。高分辨率和全彩能力使MJT 3DP成为医学3d打印的理想技术,3d打印文献证明了这一点。该技术已在美洲、欧洲、亚洲和澳大利亚的全球范围内采用。虽然MJT 3D打印机可能很昂贵,但它们制造高精度和多色部件的能力为创建先进的原型和医疗模型提供了有利可图的机会。最近,关于MJT - 3DP的文献得到了极大的扩展,部分原因是该技术成本的降低,本报告是第一个记录MJT在医学上应用的综述。此外,本报告还描述了MJT - 3DP背后的技术信息,涉及辛辛那提大学3DP实验室制造的MJT - 3DP模型的案例,以及MJT在临床环境中的挑战,包括成本、管理机器的专业知识和可扩展性问题。由于MJT - 3DP具有体素水平控制的能力,随着成像和分割技术的进一步改进,预计它将最好地代表放射图像集捕获的体素水平变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medical 3D Printing Using Material Jetting: Technology Overview, Medical Applications, and Challenges.

Material Jetting (MJT) 3D printing (3DP) is a specific technology that deposits photocurable droplets of material and colored inks to fabricate objects layer-by-layer. The high resolution and full color capability render MJT 3DP an ideal technology for 3DP in medicine as evidenced by the 3DP literature. The technology has been adopted globally across the Americas, Europe, Asia, and Australia. While MJT 3D printers can be expensive, their ability to fabricate highly accurate and multi-color parts provides a lucrative opportunity in the creation of advanced prototypes and medical models. The literature on MJT 3DP has expanded greatly as of late, in part aided by the lowering costs of the technology, and this report is the first review to document the applications of MJT in medicine. Additionally, this report portrays the technological information behind MJT 3DP, cases involving fabricated MJT 3DP models from the University of Cincinnati 3DP lab, as well as the challenges of MJT in a clinical setting, including cost, expertise in managing the machines, and scalability issues. It is expected that MJT 3DP, as imaging and segmentation technologies undergo future improvement, will be best poised with representing the voxel-level-variations captured by radiologic-image-sets due to its capacity for voxel-level-control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信