{"title":"Interpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes.","authors":"Sat Byul Seo, Hyun-Kyung Cho","doi":"10.3390/bioengineering12030321","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to predict Bruch's membrane opening-minimum rim Width (BMO-MRW), a relatively new parameter using conventional optical coherence tomography (OCT) parameter, using retinal nerve fibre layer (RNFL) thickness and visual field (VF) global indexes (MD, PSD, and VFI). We developed an interpretable machine learning model that integrates structural and functional parameters to predict BMO-MRW. The model achieved the highest predictive accuracy in the inferotemporal sector (R<sup>2</sup> = 0.68), followed by the global region (R<sup>2</sup> = 0.67) and the superotemporal sector (R<sup>2</sup> = 0.64). Through SHAP (SHapley Additive exPlanations) analysis, we demonstrated that RNFL parameters were significant contributing parameters to the prediction of various BMO-MRW parameters, with age and PSD also identified as critical factors. Our machine learning model could provide useful clinical information about the management of glaucoma when BMO-MRW is not available. Our machine learning model has the potential to be highly beneficial in clinical practice for glaucoma diagnosis and the monitoring of disease progression.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939392/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030321","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Interpretable Machine Learning Predictions of Bruch's Membrane Opening-Minimum Rim Width Using Retinal Nerve Fiber Layer Values and Visual Field Global Indexes.
The aim of this study was to predict Bruch's membrane opening-minimum rim Width (BMO-MRW), a relatively new parameter using conventional optical coherence tomography (OCT) parameter, using retinal nerve fibre layer (RNFL) thickness and visual field (VF) global indexes (MD, PSD, and VFI). We developed an interpretable machine learning model that integrates structural and functional parameters to predict BMO-MRW. The model achieved the highest predictive accuracy in the inferotemporal sector (R2 = 0.68), followed by the global region (R2 = 0.67) and the superotemporal sector (R2 = 0.64). Through SHAP (SHapley Additive exPlanations) analysis, we demonstrated that RNFL parameters were significant contributing parameters to the prediction of various BMO-MRW parameters, with age and PSD also identified as critical factors. Our machine learning model could provide useful clinical information about the management of glaucoma when BMO-MRW is not available. Our machine learning model has the potential to be highly beneficial in clinical practice for glaucoma diagnosis and the monitoring of disease progression.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering