基于强度的海马分割算法评估,使用成对的前对比和后对比MRI。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Justin Cramer, Leslie Baxter, Harrison Lang, Jonathon Parker, Alicia Chen, Nicholas Matthees, Ichiro Ikuta, Yalin Wang, Yuxiang Zhou
{"title":"基于强度的海马分割算法评估,使用成对的前对比和后对比MRI。","authors":"Justin Cramer, Leslie Baxter, Harrison Lang, Jonathon Parker, Alicia Chen, Nicholas Matthees, Ichiro Ikuta, Yalin Wang, Yuxiang Zhou","doi":"10.3390/bioengineering12030258","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal segmentation is essential in neuroimaging for evaluating conditions like Alzheimer's dementia and mesial temporal sclerosis, where small volume changes can significantly impact normative percentiles. However, inaccurate segmentation is common due to the inclusion of non-hippocampal structures such as choroid plexus and cerebrospinal fluid (CSF), leading to volumetric overestimation and confounding of functional analyses. Current methods of assessment largely rely on virtual or manual ground truth labels, which can fail to capture these inaccuracies. To address this shortcoming, this study introduces a more direct voxel intensity-based method of segmentation assessment. Using paired precontrast and postcontrast T1-weighted MRIs, hippocampal segmentations were refined by adding marginal gray matter and removing marginal CSF and enhancement to determine a total required correction volume. Six segmentation algorithms-e2dhipseg, HippMapp3r, hippodeep, AssemblyNet, FastSurfer, and QuickNat-were implemented and compared. HippMapp3r and e2dhipseg, followed closely by hippodeep, exhibited the least total correction volumes, indicating superior accuracy. Dedicated hippocampal segmentation algorithms outperformed whole-brain methods.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939414/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intensity-Based Assessment of Hippocampal Segmentation Algorithms Using Paired Precontrast and Postcontrast MRI.\",\"authors\":\"Justin Cramer, Leslie Baxter, Harrison Lang, Jonathon Parker, Alicia Chen, Nicholas Matthees, Ichiro Ikuta, Yalin Wang, Yuxiang Zhou\",\"doi\":\"10.3390/bioengineering12030258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hippocampal segmentation is essential in neuroimaging for evaluating conditions like Alzheimer's dementia and mesial temporal sclerosis, where small volume changes can significantly impact normative percentiles. However, inaccurate segmentation is common due to the inclusion of non-hippocampal structures such as choroid plexus and cerebrospinal fluid (CSF), leading to volumetric overestimation and confounding of functional analyses. Current methods of assessment largely rely on virtual or manual ground truth labels, which can fail to capture these inaccuracies. To address this shortcoming, this study introduces a more direct voxel intensity-based method of segmentation assessment. Using paired precontrast and postcontrast T1-weighted MRIs, hippocampal segmentations were refined by adding marginal gray matter and removing marginal CSF and enhancement to determine a total required correction volume. Six segmentation algorithms-e2dhipseg, HippMapp3r, hippodeep, AssemblyNet, FastSurfer, and QuickNat-were implemented and compared. HippMapp3r and e2dhipseg, followed closely by hippodeep, exhibited the least total correction volumes, indicating superior accuracy. Dedicated hippocampal segmentation algorithms outperformed whole-brain methods.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 3\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12030258\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030258","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

海马体分割在评估阿尔茨海默氏痴呆症和内侧颞叶硬化症等疾病的神经影像学中是必不可少的,在这些疾病中,小的体积变化可以显著影响规范的百分比。然而,由于包括非海马结构,如脉络膜丛和脑脊液(CSF),导致体积高估和功能分析混淆,不准确的分割是常见的。目前的评估方法很大程度上依赖于虚拟的或手动的地面真相标签,这可能无法捕捉到这些不准确性。为了解决这一缺点,本研究引入了一种更直接的基于体素强度的分割评估方法。使用配对对比前和对比后的t1加权mri,通过添加边缘灰质和去除边缘脑脊液和增强来细化海马分割,以确定所需的总校正体积。实现并比较了e2dhipseg、hipmapp3r、hipdeep、AssemblyNet、FastSurfer和quicknet六种分割算法。hipmapp3r和e2dhipseg,紧随其后的是hippodeep,显示出最小的总校正体积,表明更高的准确性。专用海马分割算法优于全脑方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intensity-Based Assessment of Hippocampal Segmentation Algorithms Using Paired Precontrast and Postcontrast MRI.

Hippocampal segmentation is essential in neuroimaging for evaluating conditions like Alzheimer's dementia and mesial temporal sclerosis, where small volume changes can significantly impact normative percentiles. However, inaccurate segmentation is common due to the inclusion of non-hippocampal structures such as choroid plexus and cerebrospinal fluid (CSF), leading to volumetric overestimation and confounding of functional analyses. Current methods of assessment largely rely on virtual or manual ground truth labels, which can fail to capture these inaccuracies. To address this shortcoming, this study introduces a more direct voxel intensity-based method of segmentation assessment. Using paired precontrast and postcontrast T1-weighted MRIs, hippocampal segmentations were refined by adding marginal gray matter and removing marginal CSF and enhancement to determine a total required correction volume. Six segmentation algorithms-e2dhipseg, HippMapp3r, hippodeep, AssemblyNet, FastSurfer, and QuickNat-were implemented and compared. HippMapp3r and e2dhipseg, followed closely by hippodeep, exhibited the least total correction volumes, indicating superior accuracy. Dedicated hippocampal segmentation algorithms outperformed whole-brain methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信