IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Samuel Kienzle, Lisa Junghans, Stefan Wieschalka, Katharina Diem, Ralf Takors, Nicole Erika Radde, Marco Kunzelmann, Beate Presser, Verena Nold
{"title":"Direct Consideration of Process History During Intensified Design of Experiments Planning Eases Interpretation of Mammalian Cell Culture Dynamics.","authors":"Samuel Kienzle, Lisa Junghans, Stefan Wieschalka, Katharina Diem, Ralf Takors, Nicole Erika Radde, Marco Kunzelmann, Beate Presser, Verena Nold","doi":"10.3390/bioengineering12030319","DOIUrl":null,"url":null,"abstract":"<p><p>Intra-experimental factor setting shifts in intensified design of experiments (iDoE) enhance understanding of bioproduction processes by capturing their dynamics and are thus essential to fulfill quality by design (QbD) ambitions. Determining the influence of process history on the cellular responses, often referred to as memory effect, is fundamental for accurate predictions. However, the current iDoE designs do not explicitly consider nor quantify the influence of process history. Therefore, we propose the one-factor-multiple-columns (OFMC)-format for iDoE planning. This format explicitly describes stage-dependent factor effects and potential memory effects as across-stage interactions (ASIs) during a bioprocess. To illustrate its utility, an OFMC-iDoE that considers the characteristic growth phases during a fed-batch process was planned. Data were analyzed using ordinary least squares (OLS) regression as previously described via stage-wise analysis of the time series and compared to direct modeling of end-of-process outcomes enabled by the OFMC-format. This article aims to provide the reader with a framework on how to plan and model iDoE data and highlights how the OFMC-format simplifies planning, and data acquisition, eases modeling and gives a straightforward quantification of potential memory effects. With the proposed OFMC-format, optimization of bioprocesses can leverage which factor settings are most beneficial in which state of the mammalian culture and thus elevate performance and quality to the next level.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 3","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12030319","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

强化实验设计(iDoE)中的实验内因素设置变化通过捕捉生物生产过程的动态变化来加深对生物生产过程的理解,因此对于实现按设计保证质量(QbD)的目标至关重要。确定过程历史对细胞反应的影响(通常称为记忆效应)是准确预测的基础。然而,目前的 iDoE 设计并没有明确考虑或量化工艺历史的影响。因此,我们提出了用于 iDoE 规划的单因子多列(OFMC)格式。这种格式明确描述了生物工艺过程中与阶段相关的因素效应和潜在的记忆效应,即跨阶段相互作用(ASI)。为说明其实用性,我们规划了一个 OFMC-iDoE,其中考虑了喂料批次工艺过程中的特征生长阶段。使用普通最小二乘法(OLS)回归分析数据,如前所述,通过对时间序列进行分阶段分析,并与 OFMC 格式启用的过程结束结果直接建模进行比较。本文旨在为读者提供如何规划和模拟 iDoE 数据的框架,并重点介绍 OFMC 格式如何简化规划和数据采集、简化建模并直接量化潜在的记忆效应。利用所提出的 OFMC 格式,生物工艺的优化可以利用哪些因子设置在哺乳动物培养的哪种状态下最有利,从而将性能和质量提升到新的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Consideration of Process History During Intensified Design of Experiments Planning Eases Interpretation of Mammalian Cell Culture Dynamics.

Intra-experimental factor setting shifts in intensified design of experiments (iDoE) enhance understanding of bioproduction processes by capturing their dynamics and are thus essential to fulfill quality by design (QbD) ambitions. Determining the influence of process history on the cellular responses, often referred to as memory effect, is fundamental for accurate predictions. However, the current iDoE designs do not explicitly consider nor quantify the influence of process history. Therefore, we propose the one-factor-multiple-columns (OFMC)-format for iDoE planning. This format explicitly describes stage-dependent factor effects and potential memory effects as across-stage interactions (ASIs) during a bioprocess. To illustrate its utility, an OFMC-iDoE that considers the characteristic growth phases during a fed-batch process was planned. Data were analyzed using ordinary least squares (OLS) regression as previously described via stage-wise analysis of the time series and compared to direct modeling of end-of-process outcomes enabled by the OFMC-format. This article aims to provide the reader with a framework on how to plan and model iDoE data and highlights how the OFMC-format simplifies planning, and data acquisition, eases modeling and gives a straightforward quantification of potential memory effects. With the proposed OFMC-format, optimization of bioprocesses can leverage which factor settings are most beneficial in which state of the mammalian culture and thus elevate performance and quality to the next level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信