机械力,细胞核,染色体和染色质。

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-03-01 DOI:10.3390/biom15030354
Malgorzata Kloc, Jarek Wosik
{"title":"机械力,细胞核,染色体和染色质。","authors":"Malgorzata Kloc, Jarek Wosik","doi":"10.3390/biom15030354","DOIUrl":null,"url":null,"abstract":"<p><p>Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 3","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940699/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanical Forces, Nucleus, Chromosomes, and Chromatin.\",\"authors\":\"Malgorzata Kloc, Jarek Wosik\",\"doi\":\"10.3390/biom15030354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940699/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15030354\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15030354","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

组织和器官内的单个细胞和细胞不断面临机械挑战,如张力、压缩、应变、剪切应力以及细胞和细胞外环境的刚性。除了外部机械力外,细胞及其组成部分还受到细胞内机械力的影响,如拉、推和拉伸,这些力是由细胞骨架和分子马达等复杂的力产生机制产生的。所有这些机械压力源都开启了机械转导途径,使细胞及其成分能够做出反应和适应。细胞膜和细胞骨架的机械力诱导的变化也传递到细胞核及其核骨架,影响核胞质运输、染色质构象、转录活性、复制和基因组,进而协调细胞的机械行为。机械反应的记忆以表观遗传和染色质结构修饰的形式储存。细胞对非细胞和细胞环境的反应的机械状态也决定了细胞的身份、命运和对入侵病原体的免疫反应。在这里,我们简要概述了了解这些过程的最新进展,强调了它们对细胞核、染色体和染色质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical Forces, Nucleus, Chromosomes, and Chromatin.

Individual cells and cells within the tissues and organs constantly face mechanical challenges, such as tension, compression, strain, shear stress, and the rigidity of cellular and extracellular surroundings. Besides the external mechanical forces, cells and their components are also subjected to intracellular mechanical forces, such as pulling, pushing, and stretching, created by the sophisticated force-generation machinery of the cytoskeleton and molecular motors. All these mechanical stressors switch on the mechanotransduction pathways, allowing cells and their components to respond and adapt. Mechanical force-induced changes at the cell membrane and cytoskeleton are also transmitted to the nucleus and its nucleoskeleton, affecting nucleocytoplasmic transport, chromatin conformation, transcriptional activity, replication, and genome, which, in turn, orchestrate cellular mechanical behavior. The memory of mechanoresponses is stored as epigenetic and chromatin structure modifications. The mechanical state of the cell in response to the acellular and cellular environment also determines cell identity, fate, and immune response to invading pathogens. Here, we give a short overview of the latest developments in understanding these processes, emphasizing their effects on cell nuclei, chromosomes, and chromatin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信