{"title":"早期地球的构造和地表环境。","authors":"Jun Korenaga","doi":"10.1089/ast.2024.0093","DOIUrl":null,"url":null,"abstract":"<p><p>The mode of tectonics that governed early Earth is controversial. This makes it challenging to infer surface environments relevant to the origin of life. The majority of the literature published in the past two decades was inclined to favor the appearance of plate tectonics sometime around the mid-Archean (∼3 Ga), with the operation of stagnant lid convection (or its variants) dominant in the earlier part of Earth's history. However, the available and increasing geological record from early Earth is actually equivocal, and there is no theoretical basis to prefer stagnant lid convection over plate tectonics. In fact, such a delayed onset of plate tectonics would inhibit the emergence of life in the Archean, let alone in the Hadean. On the contrary, rapid plate tectonics in the early Hadean, enabled by the fractional crystallization of a magma ocean, could quickly transform inclement young Earth into a habitable planet, with formation of multiple surface environments potentially conducive to abiogenesis.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tectonics and Surface Environments on Early Earth.\",\"authors\":\"Jun Korenaga\",\"doi\":\"10.1089/ast.2024.0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mode of tectonics that governed early Earth is controversial. This makes it challenging to infer surface environments relevant to the origin of life. The majority of the literature published in the past two decades was inclined to favor the appearance of plate tectonics sometime around the mid-Archean (∼3 Ga), with the operation of stagnant lid convection (or its variants) dominant in the earlier part of Earth's history. However, the available and increasing geological record from early Earth is actually equivocal, and there is no theoretical basis to prefer stagnant lid convection over plate tectonics. In fact, such a delayed onset of plate tectonics would inhibit the emergence of life in the Archean, let alone in the Hadean. On the contrary, rapid plate tectonics in the early Hadean, enabled by the fractional crystallization of a magma ocean, could quickly transform inclement young Earth into a habitable planet, with formation of multiple surface environments potentially conducive to abiogenesis.</p>\",\"PeriodicalId\":8645,\"journal\":{\"name\":\"Astrobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrobiology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1089/ast.2024.0093\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2024.0093","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Tectonics and Surface Environments on Early Earth.
The mode of tectonics that governed early Earth is controversial. This makes it challenging to infer surface environments relevant to the origin of life. The majority of the literature published in the past two decades was inclined to favor the appearance of plate tectonics sometime around the mid-Archean (∼3 Ga), with the operation of stagnant lid convection (or its variants) dominant in the earlier part of Earth's history. However, the available and increasing geological record from early Earth is actually equivocal, and there is no theoretical basis to prefer stagnant lid convection over plate tectonics. In fact, such a delayed onset of plate tectonics would inhibit the emergence of life in the Archean, let alone in the Hadean. On the contrary, rapid plate tectonics in the early Hadean, enabled by the fractional crystallization of a magma ocean, could quickly transform inclement young Earth into a habitable planet, with formation of multiple surface environments potentially conducive to abiogenesis.
期刊介绍:
Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research.
Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming