{"title":"利用 CARMA-X 对混血种群进行精细绘图,并将其应用于拉丁美洲研究。","authors":"Zikun Yang, Chen Wang, Yuridia Selene Posadas-Garcia, Valeria Añorve-Garibay, Badri Vardarajan, Andrés Moreno Estrada, Mashaal Sohail, Richard Mayeux, Iuliana Ionita-Laza","doi":"10.1016/j.ajhg.2025.02.020","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.\",\"authors\":\"Zikun Yang, Chen Wang, Yuridia Selene Posadas-Garcia, Valeria Añorve-Garibay, Badri Vardarajan, Andrés Moreno Estrada, Mashaal Sohail, Richard Mayeux, Iuliana Ionita-Laza\",\"doi\":\"10.1016/j.ajhg.2025.02.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.02.020\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.02.020","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Fine-mapping in admixed populations using CARMA-X, with applications to Latin American studies.
Genome-wide association studies (GWASs) in ancestrally diverse populations are rapidly expanding, opening up unique opportunities for novel gene discoveries and increased utility of genetic findings in non-European individuals. A popular technique to identify putative causal variants at GWAS loci is via statistical fine-mapping. Despite tremendous efforts, fine-mapping remains a very challenging task, even in the relatively simple scenario of studies with a single, homogeneous population. For studies with admixed individuals, such as within Latin America and the Caribbean, methods for gene discovery are still limited. Here, we propose a Bayesian model for fine-mapping in admixed populations, CARMA-X, that addresses some of the unique challenges of admixed individuals. The proposed method includes an estimation method for the linkage disequilibrium (LD) matrix that accounts for small reference panels for admixed individuals, heterogeneity across populations and cross-ancestry LD, and a Bayesian hypothesis test that leads to robust fine-mapping when relying on external reference panels of modest size for LD estimation. Using simulations, we compare performance with recently proposed fine-mapping methods for multi-ancestry studies and show that the proposed model provides higher power while controlling false discoveries, especially when using an out-of-sample LD matrix. We further illustrate our approach through applications to two Latin American genetic studies, the Estudio Familiar de Influencia Genética en Alzheimer (EFIGA) study in the Dominican Republic and the Mexican Biobank, where we show the benefit of modeling ancestry-specific effects by prioritizing putative causal variants and genes, including several findings driven by ancestry-specific effects in the African and Native American ancestries.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.