{"title":"含有三氟甲基的新型喹唑啉衍生物通过靶向werner解旋酶抑制细胞增殖。","authors":"Gang Yu, Jia Yu, Yunyun Zhou, Kun Liu, Xiaolin Peng, Guangcan Xu, Chao Chen, Xueling Meng, Xiaoping Zeng, Hui Wu, Ningning Zan, Heng Luo, Bixue Xu","doi":"10.1007/s11030-025-11175-w","DOIUrl":null,"url":null,"abstract":"<p><p>A series of novel 2-trifluoromethyl-4-aminoquinazoline derivatives were designed and synthesized, and their antitumor activities were evaluated. Among them, several target compounds exhibited nanomolar inhibitory activities against K562 and LNCaP. Meanwhile, the results of in vitro and in vivo activity evaluation showed that compound 9 had the significant selective anticancer activity and the lower toxicity. The target prediction and pathway analysis showed that the mechanism of compound 9 on the proliferation inhibitory activity of K562 and PC3 cells may be via inhibiting werner helicase (WRN) activity and affecting DNA damage repair. As expected, biological evaluation showed that compound 9 bind to WRN, significantly downregulated the expression of WRN, inhibited the MDM2/p53 pathway, to render the damaged DNA unrepaired, eventually causing mitotic arrest and cell death. Our findings provide a foundation for further research of trifluoromethyl-quinazoline-4-amines as WRN-dependent anticancer agents that targeting DNA damage repair pathway.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel quinazoline derivatives containing trifluoromethyl against cell proliferation by targeting werner helicase.\",\"authors\":\"Gang Yu, Jia Yu, Yunyun Zhou, Kun Liu, Xiaolin Peng, Guangcan Xu, Chao Chen, Xueling Meng, Xiaoping Zeng, Hui Wu, Ningning Zan, Heng Luo, Bixue Xu\",\"doi\":\"10.1007/s11030-025-11175-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A series of novel 2-trifluoromethyl-4-aminoquinazoline derivatives were designed and synthesized, and their antitumor activities were evaluated. Among them, several target compounds exhibited nanomolar inhibitory activities against K562 and LNCaP. Meanwhile, the results of in vitro and in vivo activity evaluation showed that compound 9 had the significant selective anticancer activity and the lower toxicity. The target prediction and pathway analysis showed that the mechanism of compound 9 on the proliferation inhibitory activity of K562 and PC3 cells may be via inhibiting werner helicase (WRN) activity and affecting DNA damage repair. As expected, biological evaluation showed that compound 9 bind to WRN, significantly downregulated the expression of WRN, inhibited the MDM2/p53 pathway, to render the damaged DNA unrepaired, eventually causing mitotic arrest and cell death. Our findings provide a foundation for further research of trifluoromethyl-quinazoline-4-amines as WRN-dependent anticancer agents that targeting DNA damage repair pathway.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11175-w\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11175-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Discovery of novel quinazoline derivatives containing trifluoromethyl against cell proliferation by targeting werner helicase.
A series of novel 2-trifluoromethyl-4-aminoquinazoline derivatives were designed and synthesized, and their antitumor activities were evaluated. Among them, several target compounds exhibited nanomolar inhibitory activities against K562 and LNCaP. Meanwhile, the results of in vitro and in vivo activity evaluation showed that compound 9 had the significant selective anticancer activity and the lower toxicity. The target prediction and pathway analysis showed that the mechanism of compound 9 on the proliferation inhibitory activity of K562 and PC3 cells may be via inhibiting werner helicase (WRN) activity and affecting DNA damage repair. As expected, biological evaluation showed that compound 9 bind to WRN, significantly downregulated the expression of WRN, inhibited the MDM2/p53 pathway, to render the damaged DNA unrepaired, eventually causing mitotic arrest and cell death. Our findings provide a foundation for further research of trifluoromethyl-quinazoline-4-amines as WRN-dependent anticancer agents that targeting DNA damage repair pathway.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;