Aqib Iqbal Dar, Vikrantvir Jain, Anu Rani, Anunay James Pulukuri, Joan Castaneda Gonzalez, Anubhav Dhull, Rishi Sharma, Anjali Sharma
{"title":"水飞蓟宾偶联半乳糖树状大分子靶向治疗肝癌。","authors":"Aqib Iqbal Dar, Vikrantvir Jain, Anu Rani, Anunay James Pulukuri, Joan Castaneda Gonzalez, Anubhav Dhull, Rishi Sharma, Anjali Sharma","doi":"10.1021/acsami.5c04744","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal forms of liver cancer, contributing significantly to global cancer-related mortality. Conventional treatments, including surgical resection, liver transplantation, and systemic therapies such as multikinase inhibitors and immune checkpoint inhibitors, often face limitations such as systemic toxicity and drug resistance, emphasizing the urgent need for more effective therapeutic strategies. In this study, we developed a galactose-functionalized dendrimer (Gal24) conjugated with a natural flavonoid, silibinin, (Gal24-Sil), for HCC therapy. In our previous study, we developed a Gal24 dendrimer to target hepatocytes <i>in vivo</i>. Here, we further demonstrated that the conjugation of silibinin to Gal24 dendrimer platform significantly enhanced its solubility and efficacy. <i>In vitro</i> studies demonstrated that Gal24-Sil conjugates significantly improved the anticancer efficacy of silibinin in HepG2 and Hep3B liver cancer cells. The conjugate induced an inflammatory response and reactive oxygen species (ROS) generation, triggering cellular apoptosis and necrosis. Furthermore, Gal24-Sil effectively reduced cell proliferation by promoting mitochondrial membrane potential (MMP) depolarization and inducing DNA damage. Our findings demonstrate the potential of Gal24-Sil as a promising nanoplatform for HCC therapy, offering enhanced therapeutic efficacy over free Silibinin. This study highlights the broader applicability of the Gal24 dendrimer platform for addressing various liver diseases.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"20980-21000"},"PeriodicalIF":8.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silibinin-Conjugated Galactose Dendrimers for Targeted Treatment of Hepatocellular Carcinoma.\",\"authors\":\"Aqib Iqbal Dar, Vikrantvir Jain, Anu Rani, Anunay James Pulukuri, Joan Castaneda Gonzalez, Anubhav Dhull, Rishi Sharma, Anjali Sharma\",\"doi\":\"10.1021/acsami.5c04744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal forms of liver cancer, contributing significantly to global cancer-related mortality. Conventional treatments, including surgical resection, liver transplantation, and systemic therapies such as multikinase inhibitors and immune checkpoint inhibitors, often face limitations such as systemic toxicity and drug resistance, emphasizing the urgent need for more effective therapeutic strategies. In this study, we developed a galactose-functionalized dendrimer (Gal24) conjugated with a natural flavonoid, silibinin, (Gal24-Sil), for HCC therapy. In our previous study, we developed a Gal24 dendrimer to target hepatocytes <i>in vivo</i>. Here, we further demonstrated that the conjugation of silibinin to Gal24 dendrimer platform significantly enhanced its solubility and efficacy. <i>In vitro</i> studies demonstrated that Gal24-Sil conjugates significantly improved the anticancer efficacy of silibinin in HepG2 and Hep3B liver cancer cells. The conjugate induced an inflammatory response and reactive oxygen species (ROS) generation, triggering cellular apoptosis and necrosis. Furthermore, Gal24-Sil effectively reduced cell proliferation by promoting mitochondrial membrane potential (MMP) depolarization and inducing DNA damage. Our findings demonstrate the potential of Gal24-Sil as a promising nanoplatform for HCC therapy, offering enhanced therapeutic efficacy over free Silibinin. This study highlights the broader applicability of the Gal24 dendrimer platform for addressing various liver diseases.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"20980-21000\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c04744\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c04744","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Silibinin-Conjugated Galactose Dendrimers for Targeted Treatment of Hepatocellular Carcinoma.
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal forms of liver cancer, contributing significantly to global cancer-related mortality. Conventional treatments, including surgical resection, liver transplantation, and systemic therapies such as multikinase inhibitors and immune checkpoint inhibitors, often face limitations such as systemic toxicity and drug resistance, emphasizing the urgent need for more effective therapeutic strategies. In this study, we developed a galactose-functionalized dendrimer (Gal24) conjugated with a natural flavonoid, silibinin, (Gal24-Sil), for HCC therapy. In our previous study, we developed a Gal24 dendrimer to target hepatocytes in vivo. Here, we further demonstrated that the conjugation of silibinin to Gal24 dendrimer platform significantly enhanced its solubility and efficacy. In vitro studies demonstrated that Gal24-Sil conjugates significantly improved the anticancer efficacy of silibinin in HepG2 and Hep3B liver cancer cells. The conjugate induced an inflammatory response and reactive oxygen species (ROS) generation, triggering cellular apoptosis and necrosis. Furthermore, Gal24-Sil effectively reduced cell proliferation by promoting mitochondrial membrane potential (MMP) depolarization and inducing DNA damage. Our findings demonstrate the potential of Gal24-Sil as a promising nanoplatform for HCC therapy, offering enhanced therapeutic efficacy over free Silibinin. This study highlights the broader applicability of the Gal24 dendrimer platform for addressing various liver diseases.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.